設(shè)
是三個不重合的平面,
l是直線,給出下列命題:
①若
,則
; ②若
③若
l上存在兩點到
的距離相等,則
; ④若
其中正確的命題是( )
試題分析:①若
,則
或
,錯誤;③若
l上存在兩點到
的距離相等,則
平行或相交,錯誤;故排除選項A、B、D,選C
點評:熟練掌握線面平行的判定和性質(zhì)定理是解決此類問題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖。在直三棱柱ABC—A
1B
1C
1中,AB=BC=2AA
1,∠ABC=90°,M是BC中點。
(I)求證:A
1B∥平面AMC
1;
(II)求直線CC
1與平面AMC
1所成角的正弦值;
(Ⅲ)試問:在棱A
1B
1上是否存在點N,使AN與MC
1成角60°?若存在,確定點N的位置;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M為AD中點.
(Ⅰ) 證明
;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為
,求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)在如圖的多面體中,
⊥平面
,
,
,
,
,
,
,
是
的中點.
(Ⅰ) 求證:
平面
;
(Ⅱ) 求證:
;
(Ⅲ) 求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,四棱錐P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90
o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E為PD的中點.
(1) 求證:CE∥平面PAB;
(2) 求PA與平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
,
是兩條不同的直線,
,
,
是三個不同的平面.有下列四個命題:
①若
,
,
,則
;②若
,
,則
;
③ 若
,
,
,則
;④ 若
,
,
,則
.
其中錯誤命題的序號是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,已知六棱錐
P—
ABCDEF的底面是正六邊形,
平面
ABC,
,給出下列結(jié)論:①
;②平面
平面
PBC;③直線
平面
PAE;④
;⑤直線PD與平面PAB所成角的余弦值為
。
其中正確的有
(把所有正確的序號都填上)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在多面體
中,平面
∥平面
,
⊥平面
,
,
,
∥
.
且
,
.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
∥平面
;
(Ⅲ)求二面角
的余弦值.
查看答案和解析>>