【題目】某單位N名員工參加“社區(qū)低碳你我他”活動.他們的年齡在25歲至50歲之間.按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.下表是年齡的頻率分布表.

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

25

a

b


(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1人在第3組的概率.

【答案】
(1)解:由頻率分布直方圖可知,[25,30)與[30,35)兩組的人數(shù)相同,

∴a=25人.

人.

總人數(shù)


(2)解:因為第1,2,3組共有25+25+100=150人,利用分層抽樣在150名員工中抽取6人,每組抽取的人數(shù)分別為:

第1組的人數(shù)為 ,

第2組的人數(shù)為

第3組的人數(shù)為 ,

∴第1,2,3組分別抽取1人,1人,4人


(3)解:由(2)可設第1組的1人為A,第2組的1人為B,第3組的4人分別為C1,C2,C3,C4,則從6人中抽取2人的所有可能結果為:

(A,B),(A,C1),(A,C2),(A,C3),(A,C4),(B,C1),(B,C2),(B,C3),(B,C4),(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4),共有15種.

其中恰有1人年齡在第3組的所有結果為:(A,C1),(A,C2),(A,C3),(A,C4),(B,C1),(B,C2),(B,C3),(B,C4),共有8種.

所以恰有1人年齡在第3組的概率為


【解析】(1)根據(jù)小矩形的高= ,故頻數(shù)比等于高之比,由此可得a、b的值;(2)計算分層抽樣的抽取比例為 = ,用抽取比例乘以每組的頻數(shù),可得每組抽取人數(shù);(3)利用列舉法寫出從6人中隨機抽取2人的所有基本事件,分別計算總個數(shù)與恰有1人在第3組的個數(shù),根據(jù)古典概型概率公式計算.
【考點精析】解答此題的關鍵在于理解頻率分布直方圖的相關知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a2=3,a3+a5=2
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn及Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足:a3=7,a5+a7=26.{an}的前n項和為Sn . (Ⅰ)求an及Sn;
(Ⅱ)令bn= (n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)對任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導函數(shù)),則下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f(
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,一個矩形花園里需要鋪兩條筆直的小路,已知矩形花園長AD=5m,寬AB=3m,其中一條小路定為AC,另一條小路過點D,問如何在BC上找到一點M,使得兩條小路AC與DM相互垂直?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(-1,1),B(1,1),C(2, +1),
(1)求直線AB和AC的斜率.
(2)若點D在線段AB(包括端點)上移動時,求直線CD的斜率的變化范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,P是四邊形ABCD所在平面外的一點,四邊形ABCD是∠DAB=60°且邊長為a的菱形.側面PAD為正三角形,其所在平面垂直于底面ABCD.

(1)若G為AD邊的中點,求證:BG⊥平面PAD;
(2)求證:AD⊥PB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}及等差數(shù)列{bn},若a1=3, (n≥2),a1=b2 , 2a3+a2=b4 ,
(1)證明數(shù)列{an﹣2}為等比數(shù)列;
(2)求數(shù)列{an}及數(shù)列{bn}的通項公式;
(3)設數(shù)列{anbn}的前n項和為Tn , 求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{bn}滿足bn=| |,其中a1=2,an+1=
(1)求b1 , b2 , b3 , 并猜想bn的表達式(不必寫出證明過程);
(2)設cn= ,數(shù)列|cn|的前項和為Sn , 求證Sn

查看答案和解析>>

同步練習冊答案