(2012•綿陽一模)若函數(shù)f(x)=-x3+bx在區(qū)間(O,1)上單調(diào)遞增,且方程f(x)=0的根都在區(qū)間[-2,2]上,則實數(shù)b的取值范圍為( 。
分析:把函數(shù)在區(qū)間(0,1)的單調(diào)遞增轉(zhuǎn)化成導(dǎo)函數(shù)在(0,1)恒大于0,然后求出方程f(x)=0的根,使根都在區(qū)間[-2,2]內(nèi)即可得答案.
解答:解:∵函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,
∴其導(dǎo)數(shù)f'(x)=-3x2+b>0在(0,1)上恒成立
即b>3x2在(0,1)上恒成立,可得b≥3
而f(x)=-x3+bx=-x(x2-b)=0的三個根為0,±
b

要使方程f(x)=0的根都在區(qū)間[-2,2]內(nèi)
只需
b
≤2,解得b≤4
綜上可得:3≤b≤4
故選D
點評:本題考查函數(shù)與方程的綜合運(yùn)用,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽一模)己知數(shù)列為等差數(shù)列,且a5+a7+a9=4π,則tan(a6+a8)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽一模)如圖,在△ABC中,AD=2DB,DE=EC,若
AB
=
a
AC
=
b
,則
AE
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽一模)已知{an}是遞增數(shù)列,且對任意的n∈N*都有an=n2+2
3
sinθ•n(θ∈[0,2π])恒成立,則角θ的取值范圍是
[0,
3
]∪[
3
,2π]
[0,
3
]∪[
3
,2π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽一模)已知等差數(shù)列{an}的前n項和為Sn,公差d≠0,且S3+S5=58,a1,a3,a7成等比數(shù)列.
(I)求數(shù)列{an}的通項公式;
(II)若{bn}為等比數(shù)列,且b5•b6+b4•b7=a8,記Tn=log3b1+log3b2+…+log3bn,求T10值.

查看答案和解析>>

同步練習(xí)冊答案