設(shè)依次是方程的實(shí)數(shù)根,則的大小關(guān)系為             
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1、x2、x3依次是方程x+2=x,log2(x+2)=,2x+x=2的實(shí)數(shù)根,則x1、x2、x3的大小關(guān)系為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)有最大值且最大值為正實(shí)數(shù),集合

,集合

   (1)求;

   (2)定義的差集:,設(shè),x均為整數(shù),且,取自A-B的概率,x取自A∩B的概率,寫(xiě)出與b的三組值,使,,并分別寫(xiě)出所有滿足上述條件的(從大到小)、b(從小到大)依次構(gòu)成的數(shù)列{}、{bn}的通項(xiàng)公式(不必證明);

   (3)若函數(shù)中,, ,設(shè)t­1、t2是方程的兩個(gè)根,判斷 是否存在最大值及最小值,若存在,求出相應(yīng)的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),.

(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

【解析】第一問(wèn)中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。

第二問(wèn)中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

設(shè),則.

設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

在區(qū)間上是減函數(shù)。又

故存在,使得.

當(dāng)時(shí),有,當(dāng)時(shí),有.

從而在區(qū)間上遞增,在區(qū)間上遞減.

[來(lái)源:]

所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有

故使命題成立的正整數(shù)m的最大值為5

 

查看答案和解析>>

同步練習(xí)冊(cè)答案