(2006•崇文區(qū)一模)已知一次函數(shù)f(x)=ax-2
(I)當(dāng)a=3時(shí),解不等式|f(x)|<4;
(II)解關(guān)于x的不等式|f(x)|<4;
(III)若不等式|f(x)|≤3對(duì)任意x∈(0,1]恒成立,求實(shí)數(shù)a的取值范圍.
分析:(I)a=3時(shí),f(x)=3x-2,然后代入|f(x)|<4,去絕對(duì)值后即可求出x的取值范圍;
(II)先去絕對(duì)值,然后討論a的符號(hào),分別求出相應(yīng)的解集即可;
(III)將若不等式|ax-2|≤3對(duì)任意x∈(0,1]恒成立,轉(zhuǎn)化成-3≤ax-2≤3對(duì)任意x∈(0,1]恒成立,然后根據(jù)一次函數(shù)的單調(diào)性即可求出a的取值范圍.
解答:解:(I)∵a=3時(shí),f(x)=3x-2
|f(x)|<4?|3x-2|<4?-4<3x-2<4?-2<3x<6?-
2
3
<x<2

∴不等式的解集為{x|-
2
3
<x<2}
(6分)
(II)∵|ax-2|<4
∴-4<ax-2<4即-2<ax<6
當(dāng)a>0時(shí),不等式|f(x)|<4的解集為{x|-
2
a
<x<
6
a
}
當(dāng)a<0時(shí),不等式|f(x)|<4的解集為{x|-
2
a
>x>
6
a
}
當(dāng)a=0時(shí),不等式|f(x)|<4的解集為R.
(III)若不等式|ax-2|≤3對(duì)任意x∈(0,1]恒成立
即-3≤ax-2≤3對(duì)任意x∈(0,1]恒成立
即-3≤a-2≤3
∴-1≤a≤5
點(diǎn)評(píng):本題主要考查了函數(shù)恒成立,以及絕對(duì)值不等式的求解,同時(shí)考查了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•崇文區(qū)一模)如果復(fù)數(shù)
1+bi
1+i
(b∈R)的實(shí)部和虛部互為相反數(shù),則b等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•崇文區(qū)一模)已知直線m、n及平面α、β,則下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•崇文區(qū)一模)如圖,直三棱柱ABC-A′B′C′中,CB⊥平面ABB′A′,點(diǎn)E是棱BC的中點(diǎn),AB=BC=AA′
(I)求證直線CA′∥平面AB′E;
(II)求二面角C-A′B′-B的大;
(III)求直線CA′與平面BB′C′C所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•崇文區(qū)一模)某足球賽事中甲乙兩中球隊(duì)進(jìn)入決賽,但乙隊(duì)明顯處于弱勢(shì),乙隊(duì)為爭(zhēng)取勝利決定采取這樣的戰(zhàn)術(shù):頑強(qiáng)防守,0:0逼平甲隊(duì),進(jìn)入點(diǎn)球大戰(zhàn).現(xiàn)規(guī)定:點(diǎn)球大戰(zhàn)中每隊(duì)各出5名隊(duì)員,且每名隊(duì)員都踢一球,假設(shè)在點(diǎn)球大戰(zhàn)中雙方每名運(yùn)動(dòng)員進(jìn)球概率均為
34
.求:
(I)乙隊(duì)踢進(jìn)4個(gè)球的概率有多大?
(II)5個(gè)點(diǎn)球過(guò)后是4:4或5:5平局的概率有多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•崇文區(qū)一模)已知f(x)=ax3+x2+cx是定義在R上的函數(shù),f(x)在[-1,0]和[4,5]上是減函數(shù),在[0,2]上是增函數(shù).
(I)求c的值;
(II)求a的取值范圍;
(III)在函數(shù)f(x)的圖象上是否存在一點(diǎn)M(x0,y0),使得曲線y=f(x)在點(diǎn)M處的切線的斜率為3,若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案