19.已知圓C:(x-a)2+y2=1,若直線l:y=x+a與圓C有公共點(diǎn),且點(diǎn)A(1,0)在圓C內(nèi)部,則實(shí)數(shù)a的取值范圍是$(0,\frac{{\sqrt{2}}}{2}]$.

分析 圓心C(a,0)到直線l的距離d=$\frac{|a+a|}{\sqrt{2}}$=|$\sqrt{2}a$|≤1,且|AC|=|a-1|<1,由此能求出實(shí)數(shù)a的取值范圍.

解答 解:∵圓C:(x-a)2+y2=1,直線l:y=x+a與圓C有公共點(diǎn),且點(diǎn)A(1,0)在圓C內(nèi)部,
∴圓心C(a,0)到直線l的距離d=$\frac{|a+a|}{\sqrt{2}}$=|$\sqrt{2}a$|≤1,①
|AC|=|a-1|<1,②
聯(lián)立①②,得0<a≤$\frac{\sqrt{2}}{2}$.
∴實(shí)數(shù)a的取值范圍是(0,$\frac{\sqrt{2}}{2}$].
故答案為:$(0,\frac{{\sqrt{2}}}{2}]$.

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,考查圓、直線方程、點(diǎn)到直線距離公式、兩點(diǎn)間距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.P為曲線C1:y=ex上一點(diǎn),Q為曲線C2:y=lnx上一點(diǎn),則|PQ|的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=|x-3|-|x+1|,則關(guān)于f(x)的描述正確的是(  )
A.函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱B.函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱
C.函數(shù)f(x)有最小值,無最大值D.函數(shù)f(x)在(-∞,-1]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,滿足an=2$\sqrt{{S}_{n}}$-1.若對(duì)任意的正整數(shù)p、q(p≠q),不等式SP+Sq>kSp+q恒成立,則實(shí)數(shù)k的取值范圍為$(-∞,\frac{1}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=ax3+3x-1(x∈R),若對(duì)于任意的x∈[0,1]都有f(x)≤0成立,則實(shí)數(shù)a的取值范圍是(-∞,-4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知p:-x2+8x+20≥0,q:x2-2x+1-m2≤0(m>0),若p是q充分不必要條件,則實(shí)數(shù)m的取值范圍是m≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,四棱錐P-ABCD中平面PAB⊥平面ABCD,底面ABCD是正方形.點(diǎn)M是棱PC的中點(diǎn)
(1)記平面ADM與平面PBC的交線是l,試判斷直線l與BC的位置關(guān)系,并加以證明.
(2)若$PA=AB=1,PB=\sqrt{2}$,求證PB⊥平面ADM,并求直線PC與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè){an}是等差數(shù)列,{bn}為等比數(shù)列,其公比q≠1,且bi>0(i=1,2,3,…,n),若a1=b1,a13=b13,則有( 。
A.a7=b7B.a7>b7或a7<b7C.a7<b7D.a7>b7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線C:y2=4x焦點(diǎn)為F,點(diǎn)D為其準(zhǔn)線與x軸的交點(diǎn),過點(diǎn)F的直線l與拋物線相交于A,B兩點(diǎn),則△DAB的面積S的取值范圍為( 。
A.[5,+∞)B.[2,+∞)C.[4,+∞)D.[2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案