已知△ABC中,∠C=60°,c=2,則a+b的取值范圍為( )
A.(2,4]
B.[2,4]
C.(3,4]
D.[3,4]
【答案】分析:先根據(jù)正弦定理求出2R并表示出a+b;再結(jié)合輔助角公式以及角A的氛圍和正弦函數(shù)的單調(diào)性即可得到答案.
解答:解:∵=2R
∴2R==
∴a+b=2R(sinA+sinB)=[sinA+sin(120°-A)]=×(sinA+cosA)
=4sin(A+
<A+⇒2<4sin(A+)≤1;
∴a+b∈(2,4].
故選:A.
點評:本題主要考查正弦定理的應用以及輔助角公式的應用.解決這類問題的關(guān)鍵在于對公式的熟練掌握以及靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,∠C=90°,直線PA⊥平面ABC,若AB=5,AC=2,則點B到平面PAC的距離為( 。
A、
13
B、
21
C、2
6
D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,c-b=1,cosA=
12
13
,S△ABC=30,則a=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•朝陽區(qū)一模)已知△ABC中,∠C=90°,AC=3,BC=4.一個圓心為M,半徑為
1
4
的圓在△ABC內(nèi),沿著△ABC的邊滾動一周回到原位.在滾動過程中,圓M至少與△ABC的一邊相切,則點M到△ABC頂點的最短距離是
2
4
2
4
,點M的運動軌跡的周長是
9
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知△ABC中,∠C=
π
2
.設∠CBA=θ,BC=a,它的內(nèi)接正方形DEFG的一邊EF在斜邊AB上,D、G分別在AC、BC上.假設△ABC的面積為S,正方形DEFG的面積為T.用a,θ表示△ABC的面積S和正方形DEFG的面積T;
f(θ)=
T
S
,試求f(θ)的最大值P,并判斷此時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,c=
5
,C=
π
3
,a+b=
2
ab,則△ABC的面積為( 。

查看答案和解析>>

同步練習冊答案