(14分)已知函數(shù)的極小值為8,其導(dǎo)函數(shù)的圖象經(jīng)過點(diǎn),如圖所示.

(1)求的解析式;     

(2)求的遞增區(qū)間

(3)若函數(shù)在區(qū)間上有兩個不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

 

(14分)

解:(1)由題意得,在x=2處取得極值-8,即得a=-1,b=-2

(2) 的單調(diào)遞增區(qū)間是

(3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+4x的極小值為-8,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(diǎn)(-2,0),如圖所示.
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)-k在區(qū)間[-3,2]上有兩個不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+4x的極小值為-8,其導(dǎo)函數(shù)y=f'(x)的圖象經(jīng)過點(diǎn)(-2,0),如右圖所示.
(1)求f(x)的解析式;
(2)求f(x)的遞增區(qū)間
(3)若函數(shù)g(x)=f(x)-k在區(qū)間[-3,2]上有兩個不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax3+bx2+4x的極小值為-8,其導(dǎo)函數(shù)y=f'(x)的圖象經(jīng)過點(diǎn)(-2,0),如右圖所示.
(1)求f(x)的解析式;
(2)求f(x)的遞增區(qū)間
(3)若函數(shù)g(x)=f(x)-k在區(qū)間[-3,2]上有兩個不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市永定縣坎市中學(xué)高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+4x的極小值為-8,其導(dǎo)函數(shù)y=f'(x)的圖象經(jīng)過點(diǎn)(-2,0),如右圖所示.
(1)求f(x)的解析式;
(2)求f(x)的遞增區(qū)間
(3)若函數(shù)g(x)=f(x)-k在區(qū)間[-3,2]上有兩個不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案