已知點(diǎn)分別是橢圓)的左頂點(diǎn)和上頂點(diǎn),橢圓的左右焦點(diǎn)分別是,點(diǎn)是線段上的動(dòng)點(diǎn),如果的最大值是,最小值是,那么,橢圓的的標(biāo)準(zhǔn)方程是                   .

試題分析:當(dāng)在A點(diǎn)時(shí)最大,此時(shí),設(shè)直線AD與圓交于M,N兩點(diǎn),P在MN中點(diǎn)時(shí)最小,設(shè)中點(diǎn)為C,直線為直線為,聯(lián)立方程的最小值為,橢圓的的標(biāo)準(zhǔn)方程
點(diǎn)評(píng):本題關(guān)鍵是找到取得最大值最小值的點(diǎn)的位置
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),上、下焦點(diǎn)分別為,
向量.直線與橢圓交于兩點(diǎn),線段中點(diǎn)為
(1)求橢圓的方程;
(2)求直線的方程;
(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線
與區(qū)域有公共點(diǎn),試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),且離心率
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在過點(diǎn)的直線交橢圓于不同的兩點(diǎn)M、N,且滿足(其中點(diǎn)O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓,是其左頂點(diǎn)和左焦點(diǎn),是圓上的動(dòng)點(diǎn),若,則此橢圓的離心率是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,已知橢圓,是橢圓的頂點(diǎn),若橢圓的離心率,且過點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)作直線,使得,且與橢圓相交于兩點(diǎn)(異于橢圓的頂點(diǎn)),設(shè)直線和直線的傾斜角分別是,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左焦點(diǎn)為, 點(diǎn)在橢圓上, 如果線段的中點(diǎn)軸的
正半軸上, 那么點(diǎn)的坐標(biāo)是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的焦點(diǎn)F1(-,0)和F2,0),長(zhǎng)軸長(zhǎng)6。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)已知直線經(jīng)過橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn)。

(I)求橢圓的方程;
(Ⅱ)求線段的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段的長(zhǎng)度最小時(shí),在橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓短軸上的兩頂點(diǎn)與一焦點(diǎn)的連線互相垂直,則離心率等于(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案