奇函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),值域為R,當且僅當x>1時,f(x)>0.
關于f(x)有如下命題:①f(-1)=0;②方程f(x)=0有無窮解;③f(x)有最小值,但無最大值;④f(x)的圖象關于原點對稱,且f(x)是周期函數(shù).其中正確命題的序號是______.
根據(jù)題意,當且僅當x>1時,f(x)>0,當0<x≤1時,有f(x)≤0,
若f(x)<0,則在區(qū)間-1<-x<0上,有f(-x)=-f(x)>0,與題意不符,故f(x)=0,即在區(qū)間(0,1]上,均有f(x)=0,
又由f(x)是奇函數(shù),則在區(qū)間[-1,0)上,也有均有f(x)=0,
綜合可得當x∈[-1,0)∪(0,1],均有f(x)=0,
對于①f(-1)=0,正確;
對于②方程f(x)=0當x∈[-1,0)∪(0,1]均成立,則方程f(x)=0有無窮解,正確;
對于③由題意無法判斷f(x)有最小值、最大值情況,錯誤;
對于④f(x)的圖象關于原點對稱,但f(x)不是周期函數(shù),錯誤;
即命題①②正確;
故答案為①②.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、奇函數(shù)f(x)是定義在R上的增函數(shù),若實數(shù)x,y滿足不等式f(x2-6x)+f(y2-8y+24)<0,則x2+y2的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)是定義在(-2,2)上的減函數(shù),若f(m-1)+f(2m-1)>0,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x)的圖象關于直線x=1對稱,并且當x∈(0,1]時,f(x)=x2+1則f(462)的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)+f(1-2x)<0,則實數(shù)x的取值范圍為
(0,1]
(0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)是定義在(-1,1)上的增函數(shù),若f(m-1)+f(2m-1)≤0,則m的取值范圍是( 。

查看答案和解析>>

同步練習冊答案