如圖,點F1(-c,0),F(xiàn)2(c,0)分別是橢圓C:(a>b>0)的左右焦點,經(jīng)過F1做x軸的垂線交橢圓C的上半部分于點P,過點F2作直線PF2垂線交直線于點Q.
(Ⅰ)如果點Q的坐標是(4,4),求此時橢圓C的方程;
(Ⅱ)證明:直線PQ與橢圓C只有一個交點.

【答案】分析:(Ⅰ)將點P(-c,y1)(y1>0)代入,可求得P,根據(jù)點Q的坐標是(4,4),PF1⊥QF2,即可求得橢圓C的方程;
(Ⅱ)利用PF1⊥QF2,求得,從而可求,又,求導函數(shù),可得x=-c時,y′==,故可知直線PQ與橢圓C只有一個交點.
解答:(Ⅰ)解:將點P(-c,y1)(y1>0)代入
∴P
∵點Q的坐標是(4,4),PF2⊥QF2


∴a=2,c=1,b=
∴橢圓C的方程為;
(Ⅱ)證明:設(shè)Q,∵PF2⊥QF2

∴y2=2a

∵P,∴
,∴
∴y′=
∴當x=-c時,y′==
∴直線PQ與橢圓C只有一個交點.
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查導數(shù)知識的運用,綜合性強.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•揭陽一模)如圖,設(shè)點F1(-c,0)、F2(c,0)分別是橢圓C:
x2
a2
+y2=1(a>1)
的左、右焦點,P為橢圓C上任意一點,且
PF1
PF2
最小值為0.
(1)求橢圓C的方程;
(2)設(shè)直線l1:y=kx+m,l2:y=kx+n,若l1、l2均與橢圓C相切,證明:m+n=0;
(3)在(2)的條件下,試探究在x軸上是否存在定點B,點B到l1,l2的距離之積恒為1?若存在,請求出點B坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽)如圖,點F1(-c,0),F(xiàn)2(c,0)分別是橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點,經(jīng)過F1做x軸的垂線交橢圓C的上半部分于點P,過點F2作直線PF2垂線交直線x=
a2
c
于點Q.
(Ⅰ)如果點Q的坐標是(4,4),求此時橢圓C的方程;
(Ⅱ)證明:直線PQ與橢圓C只有一個交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•揭陽一模)如圖,設(shè)點F1(-c,0)、F2(c,0)分別是橢圓C:
x2
a2
+y2=1(a>1)
的左、右焦點,P為橢圓C上任意一點,且
PF1
PF2
最小值為0.
(1)求橢圓C的方程;
(2)若動直線l1,l2均與橢圓C相切,且l1∥l2,試探究在x軸上是否存在定點B,點B到l1,l2的距離之積恒為1?若存在,請求出點B坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設(shè)點F1(-c,0)、F2(c,0)分別是橢圓數(shù)學公式的左、右焦點,P為橢圓C上任意一點,且數(shù)學公式最小值為0.
(1)求橢圓C的方程;
(2)若動直線l1,l2均與橢圓C相切,且l1∥l2,試探究在x軸上是否存在定點B,點B到l1,l2的距離之積恒為1?若存在,請求出點B坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案