△ABC中,角A、B、C的對應邊分別為a、b、c,且滿足a2-ab+b2=c2,
(1)求角C;
(2)若△ABC的周長為2,求△ABC面積的最大值.
(1)由a2-ab+b2=c2,得a2+b2-c2=ab,
利用余弦定理得cosC=
a2+b2-c2
2ab
=
1
2
,
∵C為三角形的內角,
C=
π
3
;
(2)由a2-ab+b2=c2=(2-a-b)2,即3ab+4=4(a+b),
而 a+b≥2
ab
,當且僅當a=b時取等號,
3ab+4≥8
ab
,
3ab-8
ab
+4≥0
,
解得:
ab
2
3
ab
≥2(舍去)
所以ab≤
4
9
,又sinC=
3
2

則S△ABC=
1
2
ab
sinC=
3
4
ab
,
a=b=
2
3
時,S△ABC有最大值為
3
9
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•豐臺區(qū)一模)在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•德州一模)已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面積S△ABC=3,求邊長a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•盧灣區(qū)一模)在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石景山區(qū)一模)在△ABC中,角A,B,C所對應的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A、B、C所對的邊長分別為a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大。
(2)若△ABC面積為
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步練習冊答案