設(shè)橢圓右焦點(diǎn)為,它與直線(xiàn)相交于、兩點(diǎn),軸的交點(diǎn)到橢圓左準(zhǔn)線(xiàn)的距離為,若橢圓的焦距的等差中項(xiàng).

⑴求橢圓離心率;

⑵設(shè)點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),若以為圓心,為半徑的圓與相切,且求橢圓的方程.

 

 

 

 

 

 

 

【答案】

 解:⑴由,即 所以……5分

⑵設(shè)橢圓方程為,將代入橢圓方程可得:,由于則有,并且,,……8分

代入上式得,所以.所求橢圓方程為……12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦點(diǎn)為F,它與直線(xiàn)l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線(xiàn)的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
(1)求橢圓離心率e;
(2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱(chēng),若以N為圓心,b為半徑的圓與l相切,且
OP
OQ
=-
5
3
求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的焦點(diǎn)為F1(-1,0)、F2(1,0),直線(xiàn)x=4是它的一條準(zhǔn)線(xiàn).
(1)求橢圓的方程;
(2)設(shè)A1、A2分別是橢圓的左頂點(diǎn)和右頂點(diǎn),P是橢圓上滿(mǎn)足|PA1|-|PA2|=2的一點(diǎn),求tan∠A1PA2的值;
(3)若過(guò)點(diǎn)(1,0)的直線(xiàn)與以原點(diǎn)為頂點(diǎn)、A2為焦點(diǎn)的拋物線(xiàn)相交于點(diǎn)M、N,求MN中點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶八中高三(下)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)橢圓(a>b>1)右焦點(diǎn)為F,它與直線(xiàn)l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線(xiàn)的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
(1)求橢圓離心率e;
(2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱(chēng),若以N為圓心,b為半徑的圓與l相切,且求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)橢圓(a>b>1)右焦點(diǎn)為F,它與直線(xiàn)l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線(xiàn)的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
(1)求橢圓離心率e;
(2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱(chēng),若以N為圓心,b為半徑的圓與l相切,且求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案