已知平面直角坐標系xOy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定,若M(x,y)為D上的動點,點A的坐標為(
2
,1)
,則z=
OM
OA
的最大值為
4
4
分析:首先畫出可行域,z=
OM
OA
代入坐標變?yōu)閦=
2
x+y,即y=-
2
x+z,z表示斜率為 -
2
的直線在y軸上的截距,故求z的最大值,即求y=-
2
x+z與可行域有公共點時在y軸上的截距的最大值.
解答:解:由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定的區(qū)域D如圖所示:
z=
OM
OA
=
2
x+y,即y=-
2
x+z
首先做出直線l0:y=-
2
x,將l0平行移動,當經(jīng)過B點時在y軸上的截距最大,從而z最大.
因為B(
2
,2),故z的最大值為4.
故答案為:4.
點評:本題考查線性規(guī)劃、向量的坐標表示、平面向量數(shù)量積的運算等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系xOy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定,若M(x,y)為D上的動點,點A的坐標為(
2
,1)

(1)求區(qū)域D的面積
(2)設z=
2
x+y
,求z的取值范圍;
(3)若M(x,y)為D上的動點,試求(x-1)2+y2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,A(cosx,sinx),B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2
(Ⅰ)求f(x)的最小正周期和對稱中心;
(Ⅱ)求f(x)在區(qū)間[0,2π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系中,角α的始邊與x正半軸重合,終邊與單位圓(圓心是原點,半徑為1的圓)交于點P.若角α在第
一象限,且tanα=
4
3
.將角α終邊逆時針旋轉(zhuǎn)
π
3
大小的角后與單位圓交于點Q,則點Q的坐標為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宜賓二模)已知平面直角坐標系xoy上的區(qū)域D由不等式組
x+y≥2
x≤1
y≤2
給定,若M(x,y)為D上的動點,A的坐標為(-1,1),則
OA
OM
的取值范圍是
[0,2]
[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系xOy上的定點M(2,0)和定直線l:x=-
3
2
,動點P在直線l上的射影為Q,且4(
PQ
+
PM
)•(
PQ
-
PM
)+2
PM
OM
=1

(1)求點P的軌跡C的方程;
(2)設A、B是軌跡C上兩個動點,
MA
MB
,λ∈R,∠AOB=θ,請把△AOB的面積S表示為θ的函數(shù),并求此函數(shù)的定義域.

查看答案和解析>>

同步練習冊答案