【題目】已知等腰三角形,, 分別為 , 的中點(diǎn),將 沿 折到 的位置, ,取線段 的中點(diǎn)為 .

(1)求證: 平面 ;

(2)求二面角 的余弦值.

【答案】(1)見(jiàn)解析;(2).

【解析】分析:(1)中點(diǎn),連接,由三角形中位線定理,結(jié)合 分別為 , 的中點(diǎn)可得四邊形為平行四邊形,由線面平行的判定定理可得結(jié)果;(2) 軸建立空間直角坐標(biāo)系,分別利用向量垂直數(shù)量積為零,列方程組求出平面與平面的法向量,利用空間向量夾角余弦公式可得二面角 的余弦值.

詳解(1)證明:取中點(diǎn),連接 ,

,

又∵

四邊形為平行四邊形

∵面 ,面

,

,

又∵

兩兩互相垂直

(2)如圖所示,分別以 軸建立空間直角坐標(biāo)系

設(shè)平面,平面的法向量分別為

二面角的平面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, , 的中點(diǎn), 的中點(diǎn),且為正三角形.

(1)求證: 平面;

(2)若,三棱錐的體積為1,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(63),每科目滿分100.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查.

1)已知抽取的名學(xué)生中含男生55人,求的值;

2)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表. 請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有 99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;

3)在抽取到的女生中按(2)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及期望.

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知圓的圓心為,半徑為.以極點(diǎn)為原點(diǎn),極軸方向?yàn)?/span>軸正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫出圓的極坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)在定義域內(nèi)存在區(qū)間[a,b],使[a,b]上的值域是[2a2b],那么稱倍增函數(shù)

I)判斷=是否為倍增函數(shù),并說(shuō)明理由;

II)證明:函數(shù)=倍增函數(shù);

III)若函數(shù)=ln)是倍增函數(shù),寫出實(shí)數(shù)m的取值范圍。(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

原命題為真,它的否命題為假;

原命題為真,它的逆命題不一定為真;

一個(gè)命題的逆命題為真,它的否命題一定為真;

一個(gè)命題的逆否命題為真,它的否命題一定為真;

⑤“,則的解集為的逆命題.

其中真命題是___________.把你認(rèn)為正確命題的序號(hào)都填在橫線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)(常數(shù)).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,求實(shí)數(shù)的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù)是函數(shù)值不恒為零的奇函數(shù),函數(shù)

1)求實(shí)數(shù)的值,并判斷函數(shù)的單調(diào)性;

2)解關(guān)于的不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案