分析 先求得偶函數(shù)f(x)的周期為4,根據(jù)當(dāng)x∈[0,2]時,f(x)=2-x2,再畫出y=f(x)以及y=2sinx在[-3π,3π]內(nèi)的圖象,數(shù)形結(jié)合可得結(jié)論.
解答 解:定義域?yàn)镽的偶函數(shù)y=f(x)滿足f(x+2)+f(x)=0,即足f(x+2)=-f(x),
∴f(x+4)=f(x),故f(x)的周期為4.
且當(dāng)x∈[0,2]時,f(x)=2-x2,則當(dāng)x∈[-2,2]時,f(x)=2-x2 .
再畫出y=f(x)以及y=2sinx在[-3π,3π]內(nèi)的圖象,如圖所示:
數(shù)形結(jié)合可得函數(shù)y=f(x)的圖象和函數(shù)y=2sinx在[-3π,3π]內(nèi)的圖象的交點(diǎn)個數(shù)為5個,
則方程f(x)=2sinx在[-3π,3π]內(nèi)根的個數(shù)是5,
故答案為:5.
點(diǎn)評 本題主要考查函數(shù)的奇偶性以及函數(shù)的周期性,方程的根的存在性以及個數(shù)判斷,函數(shù)的圖象,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{3π}{8}+2kπ,\frac{7π}{8}+2kπ}](k∈Z)$ | B. | $[{-\frac{π}{8}+2kπ,\frac{3π}{8}+2kπ}](k∈Z)$ | ||
C. | $[{\frac{3π}{8}+kπ,\frac{7π}{8}+kπ}](k∈Z)$ | D. | $[{-\frac{π}{8}+kπ,\frac{3π}{8}+kπ}](k∈Z)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 5 | 6 | 7 |
y | 60 | 55 | 53 | 46 | 45 | 41 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -i | B. | i | C. | $\frac{4}{5}-i$ | D. | $\frac{4}{5}-\frac{3}{5}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,2) | B. | [0,2] | C. | [-2,0] | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com