已知橢圓的焦距為2,且過點.
(1)求橢圓C的方程;
(2)設橢圓C的左右焦點分別為,,過點的直線與橢圓C交于兩點.
①當直線的傾斜角為時,求的長;
②求的內(nèi)切圓的面積的最大值,并求出當的內(nèi)切圓的面積取最大值時直線的方程.
(1)橢圓C的方程為;(2)(1)的長為;(2)當的內(nèi)切圓的面積取最大值時直線的方程為.

試題分析:(1)由已知得,且,聯(lián)立可求得橢圓方程;
(2)(1)聯(lián)立橢圓與直線方程,由弦長公式可直接求出的長;(2)設直線的方程為,與橢圓方程聯(lián)立消去,得,而;
利用均值不等式和函數(shù)單調(diào)性的性質(zhì)可得當時,有最大值3,這時的內(nèi)切圓面積的最大值為,直線的方程為.
試題解析:(1)由已知,得,且,解得
故橢圓C的方程為;                                4分
(2)①由,消去,             6分
;                                9分
②設直線的方程為,由,得,顯然
,則有,
的內(nèi)切圓半徑為,由可知,
最大時,也最大,的內(nèi)切圓面積也最大.
      12分
,則,且,則,
,則,從而在區(qū)間上單調(diào)遞增,故有
所以,即當,時,有最大值3,即
這時的內(nèi)切圓面積的最大值為,直線的方程為.          14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓上兩點,點的坐標為.
(1)當關于點對稱時,求證:;
(2)當直線經(jīng)過點時,求證:不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,且過點A(0,1).
 
(1)求橢圓的方程;
(2)過點A作兩條互相垂直的直線分別交橢圓于點M、N,求證:直線MN恒過定點P.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓E:=1(a>b>0)的左焦點為F1,右焦點為F2,離心率e=.過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8.

(1)求橢圓E的方程;
(2)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:在坐標平面內(nèi)是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:=1(a>b>0)的離心率為,與過右焦點F且斜率為k(k>0)的直線相交于A、B兩點.若=3,則k=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知分別是橢圓的左,右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓中心并且交橢圓于點,若過的直線是圓的切線,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線C與橢圓=1有相同的焦點,直線y=x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓=1的離心率為,則k的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

P為橢圓=1上一點,M、N分別是圓(x+3) 2+y2=4和(x-3) 2+y2=1上的點,則|PM|+|PN|的取值范圍是 ( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案