已知函數(shù)數(shù)學(xué)公式,求
(1)函數(shù)的最小正周期是多少?
(2)函數(shù)的單調(diào)增區(qū)間是什么?
(3)函數(shù)的圖象可由函數(shù)數(shù)學(xué)公式的圖象如何變換而得到?

解:(1)由函數(shù),所以,其最小正周期T=
(2)由,得:
所以,函數(shù)的單調(diào)增區(qū)間為[],k∈Z.
(3)由=可知,把函數(shù)的圖象先向左平移個(gè)單位,再向上平移2個(gè)單位得到函數(shù)的圖象.
分析:(1)直接由y=Asin(ωx+Φ)(ω>0)型函數(shù)的周期公式求函數(shù)的周期;
(2)給出的函數(shù)是復(fù)合函數(shù),內(nèi)層一次函數(shù)是增函數(shù),要求該復(fù)合函數(shù)的增區(qū)間,直接由解出x的取值范圍即可;
(3)把給出的函數(shù)變形為=,根據(jù)自變量x的變化和函數(shù)值的變化即可得到正確結(jié)論.
點(diǎn)評(píng):本題考查了三角函數(shù)的周期性及其求法,考查了與三角函數(shù)有關(guān)的復(fù)合函數(shù)的單調(diào)性,注意掌握“同增異減”的原則,考查了三角函數(shù)的圖象變換問題,該類問題極易出錯(cuò),正確解答的關(guān)鍵是看變量x的變化.此題是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函數(shù),定義域?yàn)閰^(qū)間D(使表達(dá)式有意義的實(shí)數(shù)x 的集合).
(1)求實(shí)數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)a>1,試判斷函數(shù)y=f(x)在定義域D內(nèi)的單調(diào)性,并說明理由;
(3)當(dāng)x∈A=[a,b)(A⊆D,a是底數(shù))時(shí),函數(shù)值組成的集合為[1,+∞),求實(shí)數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函數(shù),定義域?yàn)閰^(qū)間D(使表達(dá)式有意義的實(shí)數(shù)x 的集合).
(1)求實(shí)數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)a滿足0<a<1,試判斷函數(shù)y=f(x)在定義域D內(nèi)的單調(diào)性,并說明理由;
(3)當(dāng)x∈A=[a,b)(A⊆D,a是底數(shù))時(shí),函數(shù)值組成的集合為[1,+∞),求實(shí)數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1|2x-b|
是偶函數(shù),a為實(shí)常數(shù).
(1)求b的值;
(2)當(dāng)a=1時(shí),是否存在m,n(n>m>0)使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由;
(3)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1|2x-b|
是偶函數(shù),a為實(shí)常數(shù).
(1)求b的值;
(2)當(dāng)a=1時(shí),是否存在m,n(n>m>o)使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時(shí)的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實(shí)數(shù)a的取值范圍,使命題p,q中有且只有一個(gè)為真命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案