7.已知直線l1:2ax+y-1=0,l2:ax+(a-1)y+1=0,
(1)若l1⊥l2,求實數(shù)a的值;
(2)若l1∥l2時,求直線l1與l2之間的距離.

分析 (1)當(dāng)兩條直線垂直時,斜率之積等于-1,解方程求出a的值.
(2)利用兩直線平行時,一次項系數(shù)之比相等,但不等于常數(shù)項之比,求出a的值,則根據(jù)兩平行線之間的距離公式計算即可.

解答 解:(1)當(dāng)a=1時,l1與l2不垂直
當(dāng)a≠1時,l1⊥l2 時,
∴(-2a)•($\frac{-a}{a-1}$)=-1,
解得a=-1或$\frac{1}{2}$,
(2)由題意得a≠1,
∵l1∥l2
∴-2a=$\frac{-a}{a-1}$,解得a=0或a=$\frac{3}{2}$
當(dāng)a=0時,l1與l2重合,
當(dāng)a=$\frac{3}{2}$時,l1為3x-y-1=0,l2為3x-y+2=0,
∴d=$\frac{2+1}{\sqrt{10}}$=$\frac{3\sqrt{10}}{10}$

點評 本題考查兩直線相交、垂直、平行、重合的條件,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,(a>0,b>0)的焦距是實軸長的2倍,若拋物線C2:x2=2py,(p>0)的焦點到雙曲線C1的漸近線的距離為2,求拋物線C2的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若關(guān)于x的不等式|x+a|≤b的解集為[-6,2].
(1)求實數(shù)a,b的值;
(2)若實數(shù)m,n滿足|am+n|<$\frac{1}{3}$,|m-bn|<$\frac{1}{6}$,求證:|n|<$\frac{2}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)x>0,y>0,A、B、P三點共線且向量$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則$\frac{1}{x}$+$\frac{4}{y}$的最小值( 。
A.4B.2C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果函數(shù)f(x)=ax2+2x+a2-3在區(qū)間[2,4]上具有單調(diào)性,則實數(shù)a取值范圍是$({-∞,-\frac{1}{2}}]∪[-\frac{1}{4},+∞]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+5與坐標(biāo)軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x-y+a=0交于A,B兩點,且CA⊥CB求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=${(\frac{1}{3})^{2x-{x^2}}}$的值域為( 。
A.[3,+∞)B.(0,3]C.$[\frac{1}{3},+∞)$D.$(0,\frac{1}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)P為△ABC所在平面內(nèi)一點,且2$\overrightarrow{PA}$+2$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,則△PAC的面積與△ABC的面積之比等于( 。
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若函數(shù)f(x)=x2-bx+3.
(1)若函數(shù)f(x)為R上的偶函數(shù),求b的值.
(2)若函數(shù)f(x)在(-∞,2]上單調(diào)遞減,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案