若f(x)是奇函數(shù),且在(-∞,0)上是增函數(shù),又f(-2)=0,則滿足(x+1)f(x-1)>0的x的取值范圍是
 
考點:奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,將不等式進行轉(zhuǎn)化即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)是奇函數(shù),且在(-∞,0)上是增函數(shù),又f(-2)=0,
∴f(x)在(0,+∞)上是增函數(shù),且f(2)=-f(-2)=0,
∴當x>2或-2<x<0時,f(x)>0,當x<-2或0<x<2時,f(x)<0,
則不等式(x+1)f(x-1)>0等價為:
x+1>0
f(x-1)>0
x+1<0
f(x-1)<0

x>-1
x-1>0或-2<x-1<0
x<-1
x-1<-2或0<x-1<2
,
x>-1
x>1或-1<x<1
x<-1
x<-1或1<x<3

則x>1或-1<x<1或x<-1,
故不等式的解集為{x|x>1或-1<x<1或x<-1},
故答案為:{x|x>1或-1<x<1或x<-1}
點評:本題主要考查不等式的解集,利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

方程
(x+1)2+y2
+
(x-1)2+y2
=2表示(  )
A、橢圓B、圓C、直線D、線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要計算函數(shù)y=
x2-3x+2006,x>2
x+1,-2≤x≤2
x3+2015,x<-2
的值,請用If語句描述算法,并算出輸出的函數(shù)值大于2016時輸入的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的方程為
x2
4
+
y2
3
=1,直線l0:x=4,A是橢圓C的右頂點,點P(x1,y1)是橢圓上異于左,右頂點的一個動點,直線PA與l0交于點M1,直線l過點P且與橢圓交于另一點B(x2,y2),與l0交于點M2,
(1)若直線l經(jīng)過橢圓的左焦點F,且使得
AP
AB
=3,求直線l的方程;
(2)若點B恰為橢圓的左頂點,同x軸上是否存在定點D,使得變化的點P,以M1M2為直徑的圓總經(jīng)過點D,若存在,求這樣的圓面積的最小值;若不存在;請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域(用區(qū)間表示):
(1)y=x2-3x+4
(2)f(x)=
x2-2x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線的傾斜角的余弦值為
3
10
10
,雙曲線上過一個焦點且垂直于實軸的弦長為
2
3
3
,則該雙曲線的離心率等于( 。
A、
10
B、
3
C、
10
3
D、
7
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
16
+
y2
b2
=1過點(-2,
3
),則其焦距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式sin2x+acosx-a2≤1+cosx對一切x∈R恒成立,則實數(shù)a的取值范圍為(  )
A、(-1,
1
3
B、[-1,
1
3
]
C、(-∞,-1]∪[
1
3
,+∞)
D、(-∞,-1)∪(
1
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長為1,點P,Q分別在邊AB,AD上,且PQ=1,設(shè)AP+AQ=x,記△CPQ的面積函數(shù)為S=f(x).
(1)當AP=AQ時,求S的值;
(2)是否存在實數(shù)x,使得S=
2
3
?若存在,求出x的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案