已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(2)=0,且方程f(x)=x有兩個相等的實數(shù)根.
(1)求f(x)的解析式;
(2)求函數(shù)在區(qū)間[-3,3]上的最大值和最小值;
(3)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,請說明理由.
分析:(1)由方程f(x)=x有兩個相等的實數(shù)根,則△=0,得b,又由f(2)=0,可求a,從而求得f(x).
(2)先配方確定函數(shù)的對稱軸,從而可求函數(shù)在區(qū)間[-3,3]上的最大值和最小值;
(3)由的最大值,確定n≤
1
4
,從而知當n≤
1
4
時,f(x)在[m,n]上為增函數(shù).若滿足題設條件的m,n存在,則
f(m)=2m
f(n)=2n
,從而可求m,n的值.
解答:解:(1)∵f(2)=0∴4a+2b=0 ①
又方程f(x)=x有等根,即ax2+bx-x=0的判別式為零
∴(b-1)2=0
∴b=1
代入①a=-
1
2

∴f(x)=-
1
2
x2+x

(2)f(x)=-
1
2
(x-1)2+
1
2

∴函數(shù)的對稱軸為x=1
∴當x=1時,函數(shù)取得最大值為f(1)=
1
2
;
當x=-3時,函數(shù)取得最小值為f(-3)=-
15
2
; 
 (3)∵f(x)=-
1
2
(x-1)2+
1
2
1
2
,f(x)的定義域和值域分別為[m,n]和[2m,2n],
2n≤
1
2

n≤
1
4

而f(x)=-
1
2
x2+x
的對稱軸為x=1,
∴當n≤
1
4
時,f(x)在[m,n]上為增函數(shù).
若滿足題設條件的m,n存在,則
f(m)=2m
f(n)=2n

-m2+2m=4m
-n2+2n=4n

m=0或m=-2
n=0或n=-2

∵m<n≤
1
4

∴m=-2,n=0,這時,定義域為[-2,0],值域為[-4,0].
由以上知滿足條件的m,n存在,m=-2,n=0.
點評:本題以二次函數(shù)為載體,考查函數(shù)與方程的綜合運用,考查二次函數(shù)解析式的常用解法及分類討論,轉化思想,充分利用二次函數(shù)的性質是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
(I)若函數(shù)的圖象經過原點,且滿足f(2)=0,求實數(shù)m的值.
(Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案