已知圓C:(x-3)2+(y-3)2=4及定點A(1,1),M為圓C上任意一點,點N在線段MA上,且
MA
=2
AN
,求動點N的軌跡方程.
設N(x,y),M(x0,y0),則由
MA
=2
AN
得(1-x0,1-y0)=2(x-1,y-1),
1-x0=2x-2
1-y0=2y-2
,即
x0=3-2x 
y0=3-2y

∵M為圓C上任意一點
∴(x0-3)2+(y0-3)2=4,
∴(3-2x-3)2+(3-2y-3)2=4,
∴x2+y2=1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0).
(Ⅰ)若l1與圓相切,求l1的方程;
(Ⅱ)若l1與圓相交于P,Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,求證:AM•AN為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知圓C:(x-3)2+(y-4)2=4,
(Ⅰ)若直線l1過定點A(1,0),且與圓C相切,求l1的方程;
(Ⅱ)若圓D的半徑為3,圓心在直線l2:x+y-2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,
(1)直線l1過定點A (1,0).若l1與圓C相切,求l1的方程;
(2)直線l2過B(2,3)與圓C相交于P,Q兩點,求線段PQ的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,
(Ⅰ)若a=y-x,求a的最大值和最小值;
(Ⅱ)若圓D的半徑為3,圓心在直線L:x+y-2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x+3)2+(y-4)2=4.
(1)若直線l1過點A(-1,0),且與圓C相切,求直線l1的方程;
(2)若圓D的半徑為4,圓心D在直線l2:2x+y-2=0上,且與圓C內切,求圓D的方程.

查看答案和解析>>

同步練習冊答案