“幸福感指數(shù)”是指某個人主觀地評價他對自己目前生活狀態(tài)的滿意程度時,給出的區(qū)間內(nèi)的一個數(shù),該數(shù)越接近10表示越滿意,為了解某大城市市民的幸福感,隨機(jī)對該城市的男、女各500人市民進(jìn)行了調(diào)查,調(diào)查數(shù)據(jù)如下表所示:
幸福感指數(shù)[0,2)[2,4)[4,6)[6,8)[8,10)
男市民人數(shù)1020220125125
女市民人數(shù)1010180175125
根據(jù)表格,解答下面的問題:
(Ⅰ)完成頻率分布直方圖,并根據(jù)頻率分布直方圖估算該城市市民幸福感指數(shù)的平均值;(參考數(shù)據(jù):2×1+3×3+40×5+30×7+25×9=646)
(Ⅱ)如果市民幸福感指數(shù)達(dá)到6,則認(rèn)為他幸福.試在犯錯誤概率不超過0.01的前提下能否判定該市市民幸福與否與性別有關(guān)?參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.100.010.001
k02.7066.63510.828
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(Ⅰ)由調(diào)查數(shù)據(jù)能作出頻率分布直方圖,并能求出該地區(qū)居民幸福感指數(shù)的平均值.
(Ⅱ)根據(jù)觀測值的計(jì)算公式代入數(shù)據(jù)做出觀測值,把所得的觀測值同臨界值進(jìn)行比較,即可得出結(jié)論.
解答: 解:(Ⅰ)幸福感指數(shù)在[4,6),[6,8)內(nèi)的頻數(shù)分別為220+180=400和125+175=300,
因?yàn)榭側(cè)藬?shù)為1000,
所以,相應(yīng)的頻率÷組距為:400÷1000÷2=0.2,300÷1000÷2=0.15,
據(jù)此可補(bǔ)全頻率分布直方圖如右圖.
所求的平均值為0.01×2×1+0.015×2×3+0.2×2×5+0.15×2×7+0.125×2×9=6.46;
(Ⅱ)
不幸福幸福總計(jì)
男市民250250500
女市民200300500
合計(jì)4505501000
所以K2=
1000×(250×300-200×250)2
450×550×500×500
=10.101>6.635,
所以在犯錯誤概率不超過0.01的前提下能否判定該市市民幸福與否與性別有關(guān).
點(diǎn)評:本題考查頻率直方圖的應(yīng)用,考查獨(dú)立性檢驗(yàn)的應(yīng)用和列聯(lián)表的做法,本題解題的關(guān)鍵是正確計(jì)算出這組數(shù)據(jù)的觀測值,理解臨界值對應(yīng)的概率的意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右頂點(diǎn)與右焦點(diǎn)到雙曲線漸近線的距離的和為
3b
2
,則雙曲線的離心率為( 。
A、
3
2
B、
5
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,a1+
a2
2
+
a3
3
+…+
an
n
=2n-1(n∈N*
(Ⅰ)求數(shù)列{an}的前n項(xiàng)和Sn
(Ⅱ)若存在n∈N*,使得an≤n(n+1)λ成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且|QF|=
5
4
|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)過F的直線l與C相交于A、B兩點(diǎn),若AB的垂直平分線l′與C相交于M、N兩點(diǎn),且A、M、B、N四點(diǎn)在同一圓上,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-
2
3
ax3(a>0),x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若對于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,向量
m
=(2sin
B
2
,2
2
),
n
=(cosB,2cos2
B
4
-1),且
m
n

(Ⅰ)求角B的余弦值;
(Ⅱ)若b=2,求S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),A1,A2是橢圓的兩個長軸端點(diǎn),過右焦點(diǎn)F的直線l:y=k(x-1)交橢圓C于M、N兩點(diǎn),P為線段MN的中點(diǎn),當(dāng)k=1時,OP的斜率為-
3
4

(1)求橢圓C的方程;
(2)若
A1N
MA2
+
A1M
NA2
=12,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=4,an+1=3an-4n+2(n∈N*).
(Ⅰ)記bn=an-2n,試判斷數(shù)列求數(shù)列{bn}是等差數(shù)列還是等比數(shù)列?并證明你的判斷;
(Ⅱ)求數(shù)列{an}的前項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校組織數(shù)學(xué)競賽,學(xué)生成績ξ-N(100,σ2),P(ξ≥120)=a,P(80<ξ≤100)=b,則a+b=
 

查看答案和解析>>

同步練習(xí)冊答案