如圖,在四邊形ABCD中,AC和BD相交于點(diǎn)O,設(shè)數(shù)學(xué)公式=a,數(shù)學(xué)公式=b,若數(shù)學(xué)公式,則數(shù)學(xué)公式=________.(用向量a和b表示)


分析:向量表示錯(cuò)誤 a,b,請(qǐng)給修改題干,謝謝
由題意可得四邊形ABCD是梯形,且AB=2CD,由△AOB∽△COD 求得 AO=AC,=,再利用兩個(gè)向量的加減法的幾何意義,用表示
解答:由題意可得四邊形ABCD是梯形,且AB=2CD.
由△AOB∽△COD 可得 ==,∴AO=AC,即=
==+)=+)=,
故答案為
點(diǎn)評(píng):本題主要考查兩個(gè)向量的加減法的法則,以及其幾何意義,求得 = 是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,△ABC為邊長等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求線段AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點(diǎn)B作射線BBl∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值;
(3)以DH所在直線為對(duì)稱軸,線段AC經(jīng)軸對(duì)稱變換后的圖形為A′C′.
①當(dāng)t>
35
時(shí),連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)線段A′C′與射線BB,有公共點(diǎn)時(shí),求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習(xí)冊答案