已知定義在全體實(shí)數(shù)上的偶函數(shù)y=f(x)在(-∞,0]上單調(diào)遞減.

(1)說(shuō)明函數(shù)y=f(x)在[0,+∞)上的單調(diào)性;

(2)若函數(shù)y=f(x)在(-∞,0]上單調(diào)遞增,說(shuō)明函數(shù)y=f(x)在[0,+∞)上的單調(diào)性;

(3)若函數(shù)y=g(x)為奇函數(shù),又有什么樣的結(jié)論?

思路解析:本題綜合考查函數(shù)的奇偶性和單調(diào)性.

解:(1)任取x1、x2∈[0,+∞,使得0<x1<x2,則有-x2<-x1<0.因?yàn)閥=f(x)在(-∞,0上單調(diào)遞減,所以有f(-x2)>f(-x1).     ①

又因?yàn)閥=f(x)是偶函數(shù)〔f(-x)=f(x)〕,所以由①式可得f(x2)>f(x1),且0<x1<x2,即函數(shù)y=f(x)在[0,+∞上為增函數(shù).

(2)任取x1、x2∈[0,+∞,使得0<x1<x2,則有-x2<-x1<0.因?yàn)閥=f(x)在(-∞,0上單調(diào)遞增,所以有f(-x1)>f(-x2).       ②

又因?yàn)閥=f(x)是偶函數(shù)〔f(-x)=f(x)〕,所以由②式可得f(x1)>f(x2),且0<x1<x2,即函數(shù)y=f(x)在[0,+∞)上為減函數(shù).

(3)類似可得當(dāng)函數(shù)y=f(x)為奇函數(shù)時(shí),①若y=f(x)在(-∞,0上單調(diào)遞減,則y=f(x)在[0,+∞上單調(diào)遞減.②若y=f(x)在(-∞,0上單調(diào)遞增,則y=f(x)在[0,+∞上單調(diào)遞增.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案