用a,b,c表示三條不同的直線,γ表示平面,給出下列命題:
①若a∥b,b∥c,則a∥c;②若a⊥b,b⊥c,則a⊥c;
③若a∥γ,b∥γ,則a∥b;④若a⊥γ,b⊥γ,則a∥b.
其中真命題的序號(hào)是______.
【答案】分析:①直線平行的傳遞性;②垂直沒(méi)有傳遞性;③a,b還可以相交和異面;④垂直于同一平面的兩直線平行.
解答:解:①若a∥b,b∥c,則a∥c,是真命題,
因?yàn)槠叫杏谕黄矫娴膬蓷l直線平行;
②若a⊥b,b⊥c,則a⊥c,是假命題,
因?yàn)榇怪庇谕恢本的兩條件直線平行、垂直或異面;
③若a∥γ,b∥γ,則a∥b,是假命題,
因?yàn)槠叫杏谕黄矫娴膬蓷l直線平行、相交或異面;
④若a⊥γ,b⊥γ,則a∥b,正確,
因?yàn)榇怪庇谕黄矫娴膬芍本平行.
故答案為:①④.
點(diǎn)評(píng):本題考查命題的真假判斷,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意平面的性質(zhì)及其推論的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、用a、b、c表示三條不同的直線,y表示平面,給出下列命題:(  )
①若a∥b,b∥c,則a∥c;②若a⊥b,b⊥c,則a⊥c;
③若a∥y,b∥y,則a∥b;④若a⊥y,b⊥y,則a∥b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、在空間中,用a,b,c表示三條不同的直線,γ表示平面,給出下列四個(gè)命題:
①若a∥b,b∥c,則a∥c;        ②若a⊥b,b⊥c,則a⊥c;
③若a∥γ,b∥γ,則a∥b;        ④若a⊥γ,b⊥γ,則a∥b;
其中真命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用a、b、c表示三條不同的直線,y表示平面,給出下列命題:
①若a∥b,b∥c,則a∥c;
②若a⊥b,b⊥c,則a⊥c;
③若a∥y,b∥y,則a∥b;
④若a⊥y,b⊥y,則a∥b.
其中真命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用a,b,c表示三條不同的直線,γ表示平面,給出下列命題:其中真命題的序號(hào)是
①④
①④

①若a∥b,b∥c,則a∥c;②若a⊥b,b⊥c,則a⊥c;
③若a∥γ,b∥γ,則a∥b;④若a⊥γ,b⊥γ,則a∥b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•惠州模擬)用a,b,c表示三條不同的直線,γ表示平面,給出下列命題:
①若a∥b,b∥c,則a∥c;②若a⊥b,b⊥c,則a⊥c;
③若a∥γ,b∥γ,則a∥b;④若a⊥γ,b⊥γ,則a∥b.
其中真命題的序號(hào)是
①④
①④

查看答案和解析>>

同步練習(xí)冊(cè)答案