(12分)
已知線段PQ的端點
端點Q在圓
上運動,求線段PQ的中點
的軌跡方程。
點M的軌跡是以
為圓心,以1為半徑的圓。
解:設點
,
,則由中點坐標公式得:
整理可得:
,又點Q在圓上,
整理得
即點M的軌跡是以
為圓心,以1為半徑的圓。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)已知
,直線
,過點
且與直線
相切的動圓圓心
的
軌跡為
.
(1)求
的方程;
(2)已知各項均為正數(shù)的數(shù)列
的前
項和為
,且滿足:點
在曲線
上,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題9分) 已知關(guān)于
的方程
.
(1)當
為何值時,方程
表示圓;
(2)若圓
與直線
相交于M,N兩點,且|MN|=
,求
的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題9分)求圓
關(guān)于直線
的對稱圓的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)
在直角坐標系
中,直線
與
軸正半軸和
軸正半軸分別相交于
兩點
的內(nèi)切圓為⊙
(1)如果⊙
的半徑為1,
與⊙
切于點
,求直線
的方程
(2)如果⊙
的半徑為1,證明當
的面積、周長最小時,此時的
為同一三角形
(3)如果
的方程為
,
為⊙
上任一點,求
的最值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過點
的弦,其中長度為整數(shù)的弦共有
條。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
實數(shù)
且
,則連接
兩點的直線與圓心在原點上的單位圓的位置關(guān)系是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過點
可作圓
的兩條切線,則實數(shù)
的取值范圍為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過點P(2,3)向圓上
作兩條切線PA、PB,則弦AB所在直線方程為( )
A.
B.
C.
D.
查看答案和解析>>