20.現(xiàn)有6名高職學(xué)生到某公司A、B、C、D、E五個崗位實習(xí),每個崗位至少有一名學(xué)生,則學(xué)生小王和小李恰好被安排在崗位A實習(xí)的概率是$\frac{1}{75}$(結(jié)果用分?jǐn)?shù)表示)

分析 所有的分配方法共有${C}_{6}^{2}$•${A}_{5}^{5}$種,而甲、乙兩人同時參加崗位A服務(wù)的方法有${A}_{4}^{4}$種,由此求得甲、乙兩人同時參加崗位A服務(wù)的概率.

解答 解:所有的分配方法共有${C}_{6}^{2}$•${A}_{5}^{5}$種,而甲、乙兩人同時參加崗位A服務(wù)的方法有${A}_{4}^{4}$種,
故甲、乙兩人同時參加崗位A服務(wù)的概率為  $\frac{{A}_{4}^{4}}{{C}_{6}^{2}{•C}_{5}^{5}}$=$\frac{1}{75}$,
故答案為:$\frac{1}{75}$.

點評 本題主要考查等可能事件的概率,求得甲、乙兩人同時參加崗位A服務(wù)的方法有${A}_{4}^{4}$種,是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)雙曲線$\frac{{x}^{2}}{3}$-y2=1的兩焦點分別為F1,F(xiàn)2,P為雙曲線上的一點,若PF1與雙曲線的一條漸近線平行,則cos∠F1PF2=( 。
A.$-\frac{11}{13}$B.$-\frac{11}{12}$C.$-\frac{7}{12}$D.$-\frac{1}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,若$\overrightarrow{a}$=(3,-1),$\overrightarrow$-$\overrightarrow{a}$=(-1,1),則cosθ=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C的頂點為坐標(biāo)原點,焦點F(1,0),其準(zhǔn)線與x軸的交點為K,過點K的直線l與C交于A,B兩點,點A關(guān)于x軸的對稱點為D.
(1)證明:點F在直線BD上;
(2)設(shè)$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求△BDK內(nèi)切圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知f(x)是二次函數(shù)且f(0)=2,f(x+1)-f(x)=x-1,求f(x)的解析式
(2)函數(shù)f(x)=$\frac{{{x^2}+2x+a}}{x}$,若對任意x∈[1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知關(guān)于x的方程e2x+ex-a=0有實數(shù)解,則實數(shù)a的取值范圍是( 。
A.[0,+∞)B.(0,+∞)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在△ABC中,AB=BC=$\sqrt{6}$,∠ABC=90°,點D為AC的中點,將△ABD沿BD折起到△PBD的位置,使PC=PD,連接PC,得到三棱錐P-BCD,若該三棱錐的所有頂點都在同一球面上,則該球的表面積是( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在長方體ABCD-A1B1C1D1中,底面ABCD是邊長為3$\sqrt{2}$的正方形,AA1=3,E是線段A1B1上一點,若二面角A-BD-E的正切值為3,則三棱錐A-A1D1E外接球的表面積為35π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某校在一次高三年級“診斷性”測試后,對該年級的500名考生的成績進(jìn)行統(tǒng)計分析,成績的頻率分布表及頻率分布直方圖如圖所示,規(guī)定成績不小于130分為優(yōu)秀.
(1)若用分層抽樣的方法從這500人中抽取5人的成績進(jìn)行分析,求其中成績?yōu)閮?yōu)秀的學(xué)生人數(shù);
(2)在(1)中抽取的5名學(xué)生中,要隨機(jī)抽取2名學(xué)生參加分析座談會,求恰有1人成績?yōu)閮?yōu)秀的概率.
區(qū)間人數(shù)
[115,120)25
[120,125)a
[125,130)175
[130,135)150
[135,140)b

查看答案和解析>>

同步練習(xí)冊答案