命題“?x∈R,2x≠0”的否定是
 
考點:命題的否定
專題:簡易邏輯
分析:直接寫出全稱命題的否定得答案.
解答: 解:命題“?x∈R,2x≠0”的否定是:?x∈R,2x=0.
故答案為:?x∈R,2x=0.
點評:命題的否定即命題的對立面.“全稱量詞”與“存在量詞”正好構成了意義相反的表述.如“對所有的…都成立”與“至少有一個…不成立”;“都是”與“不都是”等,所以“全稱命題”的否定一定是“存在性命題”,“存在性命題”的否定一定是“全稱命題”,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖是一個空間幾何體的三視圖,則該幾何體的全面積為( 。
A、4B、8C、12D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式x2-4ax+2a+2≤0的解集為M,若M⊆[1,4],則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
y≤x+1
x≥1
y≥3x-3
,則目標函數(shù)z=x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-x (a>1)
(1)證明:
f′(x1)+f′(x2)
2
≥f′(
x1+x2
2
);
(2)求函數(shù)f(x)的最小值,并求最小值小于0時的a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是R上的奇函數(shù),且當x>0時,f(x)=x(x-1),則當x<0時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線方程為y2=2px(p>0),經(jīng)過焦點且傾斜角為135°的直線,被拋物線所截得的弦長為8.
(1)試求拋物線方程;
(2)若該拋物線的焦點為F,準線與x軸的交點為M,N為拋物線上的一點,且滿足NF=
3
2
MN,求∠NMF的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為△ABC的一個內(nèi)角,且sinα-cosα=
13
13
,則tanα的值為( 。
A、
3
2
2
3
B、
3
2
C、
3
4
4
3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x+x3
x4+2x2+1
的最大值與最小值之積等于
 

查看答案和解析>>

同步練習冊答案