已知f(x)=ax3+bx2+cx(a≠0)在x=±1時取得極值,且f(1)=-1.

(1)試求常數(shù)a、b、c的值;

(2)試判斷x=±1是函數(shù)的極小值還是極大值,并說明理由.

答案:
解析:

  解:(1)由(-1)=(1)=0,得3a+2b+c=0,3a-2b+c=0.

  又f(1)=-1,∴a+b+c=-1.

  ∴a=,b=0,c=-

  (2)f(x)=x3x,

  ∴(x)=x2(x-1)(x+1);

  當x<-1或x>1時,(x)>0;

  當-1<x<1時,(x)<0.

  ∴函數(shù)f(x)在(-∞,-1)和(1,+∞)上為增函數(shù),在(-1,1)上為減函數(shù).

  ∴當x=-1時,函數(shù)取得極大值f(-1)=1;當x=1時,函數(shù)取得極小值f(1)=-1.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高二版(A選修1-1) 2009-2010學年 第22期 總第178期 人教課標版 題型:044

已知f(x)=ax3+bx2+cx(a≠0)在x=±1時取得極值,且f(1)=-1.

(1)試求常數(shù)a,b,c的值;

(2)試判斷x=±1是函數(shù)的極小值點還是極大值點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:導學大課堂選修數(shù)學1-1蘇教版 蘇教版 題型:013

已知f(x)=ax3+bx2+cx+d(a>0)為增函數(shù),則

[  ]

A.b2-4ac>0

B.b>0,c>0

C.b=0,c>0

D.b2-3ac<0

查看答案和解析>>

科目:高中數(shù)學 來源:2012高三數(shù)學一輪復習單元練習題 導數(shù)(2) 題型:044

已知f(x)=ax3-2ax+b在區(qū)間[-2,1]上最大值是5,最小值是-11,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:新課標高三數(shù)學導數(shù)專項訓練(河北) 題型:解答題

已知f(x)=ax3+bx2+cx在區(qū)間[0,1]上是增函數(shù),在區(qū)間(-∞,0),(1,+∞)上是減函數(shù),又f′=.

(1)求f(x)的解析式;

(2)若在區(qū)間[0,m](m>0)上恒有f(x)≤x成立,求m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆度黑龍江龍東地區(qū)高二第一學期期末文科數(shù)學試卷 題型:解答題

已知f(x)=ax3+bx2-2x+c在x=-2時有極大值6,在x=1時有極小值.

(1)求a、b、c的值;

(2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

 

查看答案和解析>>

同步練習冊答案