【題目】定義:如果一個(gè)數(shù)列從第二項(xiàng)起,后一項(xiàng)與前一項(xiàng)的和相等且為同一常數(shù),這樣的數(shù)列叫“等和數(shù)列”,這個(gè)常數(shù)叫公和.給出下列命題:
①“等和數(shù)列”一定是常數(shù)數(shù)列;
②如果一個(gè)數(shù)列既是等差數(shù)列又是“等和數(shù)列”,則這個(gè)數(shù)列一定是常數(shù)列;
③如果一個(gè)數(shù)列既是等比數(shù)列又是“等和數(shù)列”,則這個(gè)數(shù)列一定是常數(shù)列;
④數(shù)列是“等和數(shù)列”且公和,則其前項(xiàng)之和;
其中,正確的命題為__________.(請(qǐng)?zhí)畛鏊姓_命題的序號(hào))
【答案】②
【解析】
利用“等和數(shù)列”的定義對(duì)每一個(gè)命題逐一分析判斷得解.
①“等和數(shù)列”不一定是常數(shù)數(shù)列,如數(shù)列是“等和數(shù)列”,但是不是常數(shù)數(shù)列,所以該命題錯(cuò)誤;
②如果一個(gè)數(shù)列既是等差數(shù)列又是“等和數(shù)列”,則這個(gè)數(shù)列一定是常數(shù)列.如果數(shù)列是等差數(shù)列,所以,如果數(shù)列是“等和數(shù)列”,所以
所以所以,所以,所以這個(gè)數(shù)列一定是常數(shù)列,所以該命題是正確的.
③如果一個(gè)數(shù)列既是等比數(shù)列又是“等和數(shù)列”,則這個(gè)數(shù)列一定是常數(shù)列. 如果數(shù)列是等比數(shù)列,所以,如果數(shù)列是“等和數(shù)列”,所以
所以所以,所以,所以這個(gè)數(shù)列不一定是常數(shù)列,所以該命題是錯(cuò)誤的.
④數(shù)列是“等和數(shù)列”且公和,則其前項(xiàng)之和,是錯(cuò)誤的.舉例“等和數(shù)列”其,所以該命題是錯(cuò)誤的.
故答案為:②
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,,,,點(diǎn)E為AD的中點(diǎn),,平面ABCD,且
(1)求證:;
(2)線段PC上是否存在一點(diǎn)F,使二面角的余弦值是?若存在,請(qǐng)找出點(diǎn)F的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且點(diǎn)在直線上.
(1)求的值及直線的直角坐標(biāo)方程;
(2)圓的極坐標(biāo)方程為,試判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)向左平移個(gè)單位,得到的圖象,則滿足( )
A.圖象關(guān)于點(diǎn)對(duì)稱,在區(qū)間上為增函數(shù)
B.函數(shù)最大值為2,圖象關(guān)于點(diǎn)對(duì)稱
C.圖象關(guān)于直線對(duì)稱,在上的最小值為1
D.最小正周期為,在有兩個(gè)根
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且過點(diǎn).過點(diǎn)的直線交橢圓于, 兩點(diǎn), 為橢圓的左頂點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求面積的最大值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 有極值,且函數(shù)的極值點(diǎn)是的極值點(diǎn),其中是自然對(duì)數(shù)的底數(shù).(極值點(diǎn)是指函數(shù)取得極值時(shí)對(duì)應(yīng)的自變量的值)
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),若函數(shù)的最小值為,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列同時(shí)滿足:①對(duì)于任意的正整數(shù), 恒成立;②對(duì)于給定的正整數(shù), 對(duì)于任意的正整數(shù)恒成立,則稱數(shù)列是“數(shù)列”.
(1)已知判斷數(shù)列是否為“數(shù)列”,并說明理由;
(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得, , , 成等差數(shù)列,證明: 是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義在上的奇函數(shù).
(Ⅰ)求的解析式;
(Ⅱ)判斷在定義域上的單調(diào)性,并用函數(shù)單調(diào)性定義給予證明;
(Ⅲ)若關(guān)于的方程在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二期中考試后,教務(wù)處計(jì)劃對(duì)全年級(jí)數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì)分析,從男、女生中各隨機(jī)抽取100名學(xué)生,分別制成了男生和女生數(shù)學(xué)成績的頻率分布直方圖,如圖所示.
(1)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(2)在(1)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com