分析 (1)利用休閑區(qū)A1B1C1D1的面積為4000平方米,表示出${B_1}{C_1}=\frac{4000}{x}$米,進而可得公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)利用基本不等式確定公園所占最小面積,即可得到結(jié)論.
解答 解:(1)由A1B1=x米,知${B_1}{C_1}=\frac{4000}{x}$米,
∴$S=(x+20)(\frac{4000}{x}+8)$=$4160+8x+\frac{80000}{x}(x>0)$;
(2)$S=4160+8x+\frac{80000}{x}≥4160+2\sqrt{8x•\frac{80000}{x}}=5760$,
當(dāng)且僅當(dāng)$8x=\frac{80000}{x}$,即x=100時取等號,
∴要使公園所占面積最小,休閑區(qū)A1B1C1D1的長為100米、寬為40米,面積最小值為5760.
點評 本題考查函數(shù)模型的選擇與應(yīng)用,考查基本不等式的運用,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P=Q | B. | P⊆Q | C. | P?Q | D. | P∩Q=ϕ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2a | B. | 4a | C. | $\frac{1}{2a}$ | D. | $\frac{1}{4a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若直線a∥b,b?α則a∥α | B. | 若平面α⊥β,a⊥α,則a∥β | ||
C. | 若a⊥α,b⊥β,a∥b,則α∥β | D. | 若平面α∥β,a?α,b?β,則a∥b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com