已知a>0,-2a<b<-a,a+b+c=0,求
b2-3ac
a2
的取值范圍.
考點(diǎn):基本不等式
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:由已知利用基本不等式的性質(zhì)可得-2<
b
a
<-1
,1+
b
a
+
c
a
=0,
c
a
=-1-
b
a
.令x=
b
a
,則-2<x<-1,代入
b2-3ac
a2
=x2+3x+3=f(x).利用二次函數(shù)的單調(diào)性即可得出.
解答: 解:∵a>0,-2a<b<-a,a+b+c=0,
-2<
b
a
<-1
,1+
b
a
+
c
a
=0,
c
a
=-1-
b
a

b2-3ac
a2
=(
b
a
)2
-3(
c
a
)
=(
b
a
)2-3(-1-
b
a
)
=(
b
a
)2+3×
b
a
+3,
令x=
b
a
,則2<x<-1,
b2-3ac
a2
=x2+3x+3=fx).
∴f(x)=(x+
3
2
)2
+
3
4
(
3
4
,1)

∴求
b2-3ac
a2
的取值范圍是(
3
4
,1)
點(diǎn)評:本題考查了不等式的性質(zhì)、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U=R,A={x|1≤x≤4},B={x|(x+2)(x-3)<0},C={x|m+1<x<2m-1}
(1)求A∪B,(CUA)∩B.
(2)若C⊆(A∪B),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,貨輪在海上以35nmile/h的速度沿著方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為148°的方向航行.為了確定船位,在B點(diǎn)觀察燈塔A的方位角是126°,航行半小時(shí)后到達(dá)C點(diǎn),觀察燈塔A的方位角是78°.求貨輪到達(dá)C點(diǎn)時(shí)與燈塔A的距離(精確到0.01nmile).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)為正的無窮數(shù)列{xn}滿足lnxn+
1
xn+1
<1(n∈N+),證明,xn≤1(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計(jì)算log3
427
3
+lg25+lg4+7 log72+log23•log94=
 
;
(2)設(shè)集合A={x|
1
32
≤2-x≤4},B={x|m-1<x<2m+1},若A∩B=B,求m的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1、l2的方向向量分別為
a
=(1,2,-2),
b
=(-2,3,2),則( 。
A、l1∥l2
B、l1與l2相交,但不垂直
C、l1⊥l2
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b都是正數(shù),且滿足
1
a
+
4
b
=1則使a+b>c恒成立的實(shí)數(shù)c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sinπx
πx+π1-x
(x∈R).下列命題:
①函數(shù)f(x)既有最大值又有最小值;
②函數(shù)f(x)的圖象是軸對稱圖形;
③函數(shù)f(x)在區(qū)間[-π,π]上共有7個(gè)零點(diǎn);
④函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增.
其中真命題是
 
.(填寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=lg(1010x+1)+ax是偶函數(shù),則a=
 

查看答案和解析>>

同步練習(xí)冊答案