函數(shù)y=
x-5
x-a-2
在(-1,+∞)上單調(diào)遞增,則a的取值范圍是( 。
分析:由題意可得,當(dāng)x>-1時(shí),y′=
3-a
(x-a-2)2
≥0,由此求得a的范圍.
解答:解:由于函數(shù)y=
x-5
x-a-2
在(-1,+∞)上單調(diào)遞增,
可得 當(dāng)x>-1時(shí),y′=
(x-a-2)-(x-5)
(x-a-2)2
=
3-a
(x-a-2)2
≥0
求得 a≤-3,
故選 C.
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9、已知函數(shù)y=
6x+5
x-1
(x∈R,且x≠1),那么它的反函數(shù)為(  )
A、y=
6x+5
x-1
(x∈R,且x≠1)
B、y=
x+5
x-6
(x∈R,且x≠6)
C、y=
x-1
6x+5
(x∈R,且x≠-
5
6
D、y=
x-6
x+5
(x∈R,且x≠-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x+5x-a
在(-1,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是
-5<a≤-1
-5<a≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出函數(shù)封閉的定義:若對(duì)于定義域D內(nèi)的任意一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,稱(chēng)函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說(shuō)明理由;
(2)若定義域D2=(1,5],是否存在實(shí)數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(3)利用(2)中函數(shù),構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過(guò)程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過(guò)程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.
①如果可以用上述方法構(gòu)造出一個(gè)無(wú)窮常數(shù)列{xn},求實(shí)數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=
x+5
x-a
在(-1,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案