如圖,在四棱錐P-ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點(diǎn).

(Ⅰ)求證:PB⊥DM;

(Ⅱ)求BD與平面ADMN所成的角。

解:方法一:

(Ⅰ)因?yàn)镹是PB的中點(diǎn),PA=AB,

所以AN⊥PB. 

因?yàn)锳D⊥面PAB,

所以AD⊥PB.

從而PB⊥平面ADMN.

所以PB⊥DM.

(Ⅱ)連結(jié)DN,

因?yàn)镻B⊥平面ADMN,

所以∠BDN是BD與平面ADMN所成的角.

中, ,

故BD與平面ADMN所成的角是.

方法二:

如圖,以A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè)BC=1,則


(Ⅰ)因?yàn)?sub>=0

                   

所以PB⊥DM .

(Ⅱ)因?yàn)?sub>=0

                  

所以PB⊥AD.

又PB⊥DM.

因此的余角即是BD與平面ADMN.

所成的角.

因?yàn)?

所以

因此BD與平面ADMN所成的角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案