19.已知定義在R上的函數(shù)f(x)滿足f′(x)-f(x)=(1-2x)e-x,且f(0)=0.
則下列命題正確的是①②③.(寫出所有正確命題的序號)
①R有極大值,沒有極小值;
②設曲線f(x)上存在不同兩點A,B處的切線斜率均為k,則k的取值范圍是-$\frac{1}{{e}^{2}}$<k<0;
③對任意x1,x2,∈(2,+∞)都有f($\frac{{x}_{1}{+x}_{2}}{2}$)≤$\frac{{f(x}_{1})+f{(x}_{2})}{2}$恒成立.

分析 由已知中函數(shù)f(x)滿足f′(x)-f(x)=(1-2x)e-x,可得f(x)=xe-x,f′(x)=(1-x)e-x,然后逐一分析三個命題的真假得答案.

解答 解:①∵f′(x)-f(x)=(1-2x)e-x,
∴f(x)=xe-x,f′(x)=(1-x)e-x,
令f′(x)>0,解得x<1,令f′(x)<0,解得x>1,
∴函數(shù)f(x)在(-∞,1)遞增,在(1,+∞)遞減,
∴函數(shù)f(x)的極大值是f(1),沒有極小值,故①正確;
②∵k=f′(x)=(1-x)e-x,
∴f″(x)=e-x(x-2),
令f″(x)>0,解得x>2,令f″(x)<0,解得x<2,
∴f′(x)在(-∞,2)遞減,在(2,+∞)遞增,
∴f′(x)最小值=f′(x)極小值=f′(2)=-$\frac{1}{{e}^{2}}$,
而x→∞時,f′(x)→0,
∴k的取值范圍是-$\frac{1}{{e}^{2}}$<k<0,故②正確;
③結合①②函數(shù)f(x)在(2,+∞)上是凹函數(shù),
∴f($\frac{{x}_{1}{+x}_{2}}{2}$)≤$\frac{{f(x}_{1})+f{(x}_{2})}{2}$恒成立,故③正確.
∴正確的命題是①②③.
故答案為:①②③.

點評 本題考查命題的真假判斷與應用,訓練了利用導數(shù)求函數(shù)的最值,難度較大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.在空間直角坐標系中,已知點A(1,1,1),B(1,0,1),則線段AB的長度為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=Asin(ωx+ϕ)的部分圖象如圖所示,為了得到g(x)=2sin2x的圖象,則只需將f(x)的圖象( 。
A.向右平移$\frac{π}{6}$個長度單位B.向右平移$\frac{π}{12}$個長度單位
C.向左平移$\frac{π}{6}$個長度單位D.向左平移$\frac{π}{12}$個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{cosx-1}{\sqrt{3-2\sqrt{2}sin(x+\frac{π}{4})}}$(x∈[0,2π)),則f(x)的值域是(  )
A.[-$\frac{\sqrt{3}}{3}$,0]B.[-1,1]C.[-1,0]D.[-$\sqrt{2}$,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若函數(shù)f(x)=(x-2)ex+a(x-1)2,(a>0)存在負數(shù)零點,則a的取值范圍是( 。
A.(2,+∞)B.(2,6)C.(0,6)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.過正四面體ABCD的頂點A作一個形狀為等腰三角形的截面,且使截面與底面BCD所成的角為75°,這樣的截面有( 。
A.6個B.12個C.16個D.18個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.45°=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知O為坐標原點,拋物線C:y2=nx(n>0)在第一象限內(nèi)的點P(1,t)到焦點的距離為2,曲線C在點P處的切線交x軸于點Q,直線l1經(jīng)過點Q且垂直于x軸.
(Ⅰ)求線段OQ的長;
(Ⅱ)設不經(jīng)過點P和Q的動直線l2:x=my+b交曲線C于點A和B,交l1于點E,若直線PA,PE,PB的斜率依次成等差數(shù)列,試問:l2是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知A,D分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點和上頂點,點P是線段AD上的任意一點,點F1,F(xiàn)2分別是橢圓的左,右焦點,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,最小值是-$\frac{11}{5}$,則橢圓的標準方程為( 。
A.x2+$\frac{{y}^{2}}{2}$=1B.x2+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$+y2=1D.$\frac{{x}^{2}}{4}$+y2=1

查看答案和解析>>

同步練習冊答案