已知雙曲線的兩個(gè)焦點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)在雙曲線上,且,若、、成等比數(shù)列,則等于

A.               B.               C.              D.

 

【答案】

A

【解析】

試題分析:由題意、成等比數(shù)列可知,,即

由雙曲線的定義可知,即可得①設(shè)由余弦定理可得:,②,由①②化簡(jiǎn)得:

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013073112120494909866/SYS201307311212289621596454_DA.files/image015.png">,,所以.所以

考點(diǎn):本小題注意考查雙曲線的簡(jiǎn)單幾何性質(zhì).

點(diǎn)評(píng):本題考查雙曲線的定義,余弦定理以及等比數(shù)列的應(yīng)用,是有難度的綜合問(wèn)題,考查分析問(wèn)題解決問(wèn)題的能力.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)為F1(-
5
,0)、F2
5
,0),P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|•|PF2|=2,則該雙曲線的方程是( 。
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)是橢圓
x2
100
+
y2
64
=1
的兩個(gè)頂點(diǎn),雙曲線的兩條準(zhǔn)線經(jīng)過(guò)橢圓的兩個(gè)焦點(diǎn),則此雙曲線的方程是( 。
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)為橢圓
x2
16
+
y2
7
=1
的長(zhǎng)軸的端點(diǎn),其準(zhǔn)線過(guò)橢圓的焦點(diǎn),則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)為F1(-
5
,0)
F2(
5
,0)
,P是此雙曲線上的一點(diǎn),且PF1⊥PF2,|PF1|•|PF2|=2,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩個(gè)焦點(diǎn)F1(-
10
,0),F(xiàn)2
10
,0),M是此雙曲線上的一點(diǎn),|
MF1
|-|
MF2
|=6,則雙曲線的方程為
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步練習(xí)冊(cè)答案