已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當x∈[0,2]時,求|f(x)|的最大值.
(1)因為f(x)=x3-3x2+3ax-3a+3,所以f(x)=3x2-6x+3a,
故f(1)=3a-3,又f(1)=1,所以所求的切線方程為y=(3a-3)x-3a+4;
(2)由于f(x)=3(x-1)2+3(a-1),0≤x≤2.
故當a≤0時,有f(x)≤0,此時f(x)在[0,2]上單調遞減,故
|f(x)|max=max{|f(0)|,|f(2)|}=3-3a.
當a≥1時,有f(x)≥0,此時f(x)在[0,2]上單調遞增,故
|f(x)|max=max{|f(0)|,|f(2)|}=3a-1.
當0<a<1時,由3(x-1)2+3(a-1)=0,得x1=1-
1-a
,x2=1+
1-a

所以,當x∈(0,x1)時,f(x)>0,函數(shù)f(x)單調遞增;
當x∈(x1,x2)時,f(x)<0,函數(shù)f(x)單調遞減;
當x∈(x2,2)時,f(x)>0,函數(shù)f(x)單調遞增.
所以函數(shù)f(x)的極大值f(x1)=1+2(1-a)
1-a
,極小值f(x2)=1-2(1-a)
1-a

故f(x1)+f(x2)=2>0,f(x1)-f(x2)=4(1-a)
1-a
>0

從而f(x1)>|f(x2)|.
所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.
當0<a<
2
3
時,f(0)>|f(2)|.
f(x1)-f(0)=2(1-a)
1-a
-(2-3a)
=
a2(3-4a)
2(1-a)
1-a
+2-3a
>0

|f(x)|max=f(x1)=1+2(1-a)
1-a

2
3
≤a<1
時,|f(2)|=f(2),且f(2)≥f(0).
f(x1)-|f(2)|=2(1-a)
1-a
-(3a-2)
=
a2(3-4a)
2(1-a)
1-a
+3a

所以當
2
3
≤a<
3
4
時,f(x1)>|f(2)|.
f(x)max=f(x1)=1+2(1-a)
1-a

3
4
≤a<1
時,f(x1)≤|f(2)|.
故f(x)max=|f(2)|=3a-1.
綜上所述|f(x)|max=
3-3a,a≤0
1+2(1-a)
1-a
,0<a<
3
4
3a-1,a≥
3
4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a∈R,函數(shù)f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函數(shù)g(x)=f′(x)是偶函數(shù),求f(x)的極大值和極小值;
(Ⅱ)如果函數(shù)f(x)是(-∞,?+∞)上的單調函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,函數(shù)f(x)=ln(x+1)-x2+ax+2.
(1)若函數(shù)f(x)在[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
(2)令a=-1,b∈R,已知函數(shù)g(x)=b+2bx-x2.若對任意x1∈(-1,+∞),總存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,函數(shù)f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e為自然對數(shù)的底).
(1)當a>0時,求函數(shù)f(x)在區(qū)間(0,e]上的最小值;
(2)是否存在實數(shù)x0∈(0,e],使曲線y=g(x)在點x=x0處的切線與y軸垂直?若存在求出x0的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•太原一模)已知a∈R,函數(shù) f(x)=x3+ax2+(a-3)x的導函數(shù)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江)已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當x∈[0,2]時,求|f(x)|的最大值.

查看答案和解析>>

同步練習冊答案