11.拋物線E:y2=2px(p>0)的焦點(diǎn)F,過點(diǎn)H(3,0)作兩條互相垂直的直線分別交拋物線E于點(diǎn)A,B和點(diǎn)C,D,其中點(diǎn)A,C在x軸上方.
(Ⅰ)若點(diǎn)C的坐標(biāo)為(2,2),求△ABC的面積;
(Ⅱ)若p=2,直線BC過點(diǎn)F,求直線CD的方程.

分析 (Ⅰ)點(diǎn)C(2,2)在拋物線E上,可得4=4p,解得p,可得拋物線E的方程為y2=2x.由AB⊥CD,可得kAB•kCD=-1,解得kAB,由直線AB過點(diǎn)H(3,0),可得直線AB方程為y=$\frac{1}{2}$(x-3),設(shè)A(x1,y1),B(x2,y2),與拋物線方程聯(lián)立化簡得y2-4y-6=0;可得|AB|=$\sqrt{(1+{2}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$,|CH|,S△ABC=$\frac{1}{2}$|AB|•|CH|.
(Ⅱ)設(shè)C(x3,y3),D(x4,y4),則$\overrightarrow{HB}$=(x2-3,y2),$\overrightarrow{HC}$=(x3-3,y3),利用AB⊥CD,可得$\overrightarrow{HB}$•$\overrightarrow{HC}$=x2x3-3(x2+x3)+9+y2y3=0.根據(jù)直線BC過焦點(diǎn)F(1,0),且直線BC不與x軸平行,設(shè)直線BC的方程為x=ty+1,聯(lián)立$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=ty+1}\end{array}\right.$,得y2-4ty-4=0,利用根與系數(shù)的關(guān)系即可得出.

解答 解:(Ⅰ)∵點(diǎn)C(2,2)在拋物線E上,∴4=4p,p=1,
∴拋物線E的方程為y2=2x,
∵kCD=$\frac{2-0}{2-3}$=-2,且AB⊥CD,∴kAB•kCD=-1,
∴kAB=$\frac{1}{2}$,
又∵直線AB過點(diǎn)H(3,0),∴直線AB方程為y=$\frac{1}{2}$(x-3),
設(shè)A(x1,y1),B(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{{y}^{2}=2x}\\{y=\frac{1}{2}(x-3)}\end{array}\right.$,化簡得y2-4y-6=0;所以△=40>0,且y1+y2=4,y1•y2=-6,
此時(shí)|AB|=$\sqrt{(1+{2}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$=10$\sqrt{2}$,|CH|=$\sqrt{(2-3)^{2}+(2-0)^{2}}$=$\sqrt{5}$,
∴S△ABC=$\frac{1}{2}$|AB|•|CH|=$\frac{1}{2}×10\sqrt{2}×\sqrt{5}$=5$\sqrt{10}$.
(Ⅱ)設(shè)C(x3,y3),D(x4,y4),則$\overrightarrow{HB}$=(x2-3,y2),$\overrightarrow{HC}$=(x3-3,y3),
∵AB⊥CD,
∴$\overrightarrow{HB}$•$\overrightarrow{HC}$=(x2-3)(x3-3)+y2y3=x2x3-3(x2+x3)+9+y2y3=0,(1)
∵直線BC過焦點(diǎn)F(1,0),且直線BC不與x軸平行,
∴設(shè)直線BC的方程為x=ty+1,
聯(lián)立$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=ty+1}\end{array}\right.$,得y2-4ty-4=0,△=16t2+16>0,且y2+y3=4t,y2•y3=-4,(2)
∴x2+x3=ty2+1+ty3+1=t(y2+y3)+2=4t2+2,x2•x3=$\frac{{y}_{2}^{2}}{4}•\frac{{y}_{3}^{2}}{4}$=$\frac{({y}_{2}{y}_{3})^{2}}{16}$=1.
代入(1)式得:1-3(4t2+2)+9-4=0,解得t=0,
代入(2)式解得:y2=-2,y3=2,此時(shí)x2=x3=1;∴C(1,2),
∴kCD=$\frac{2-3}{1-0}$=-1,
∴直線CD的方程為y=-x+3.

點(diǎn)評(píng) 本小題考查直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí);考查學(xué)生基本運(yùn)算能力,推理論證能力,運(yùn)算求解能力;考查學(xué)生函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為d,已知(a5-1)2015+2016a5+(a5-1)2017=2008,(a11-1)2015+2016a11+(a11-1)2017=2024,則下列命題是真命題的是( 。
A.S15=22,d<0B.S15=22,d>0C.S15=15,d<0D.S15=15,d>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線方程為y=$\sqrt{3}$x,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題p:?x∈R,ex≥1,寫出命題p的否定:?x∈R,ex<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,若雙曲線上一點(diǎn)P滿足|PF2|=7,則△F1PF2的周長等于(  )
A.16B.18C.30D.18或30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)直線3x+4y-5=0與圓C1:x2+y2=9交于A,B兩點(diǎn),若圓C2的圓心在線段AB上,且圓C2與圓C1相切,切點(diǎn)在圓C1的劣弧AB上,則圓C2半徑的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上是減函數(shù),且f(2)=0,若f(lnx)>0,則x的取值范圍是$(\frac{1}{{e}^{2}},{e}^{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在${(\frac{a}{x}-\sqrt{\frac{x}{2}})}^{9}$的二項(xiàng)式展開式中,x3的系數(shù)是$\frac{9}{4}$,則實(shí)數(shù)a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=log3x+x-3的零點(diǎn)所在的區(qū)間是( 。
A.(0,2)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案