(本小題滿分14分)已知函數(shù)=,.
(1)求函數(shù)在區(qū)間上的值域;
(2)是否存在實(shí)數(shù),對(duì)任意給定的,在區(qū)間上都存在兩個(gè)不同的,使得成立.若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
(3)給出如下定義:對(duì)于函數(shù)圖象上任意不同的兩點(diǎn),如果對(duì)于函數(shù)圖象上的點(diǎn)(其中總能使得成立,則稱函數(shù)具備性質(zhì)“”,試判斷函數(shù)是不是具備性質(zhì)“”,并說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(Ⅰ)若函數(shù)在上為增函數(shù),求正實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù),曲線過點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰好與直線x-3y=0垂直。
①求a,b的值;
②求該函數(shù)的單調(diào)區(qū)間和極值。
③若函數(shù)在上是增函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)已知,若函數(shù)的圖象總在直線的下方,求的取值范圍;
(Ⅲ)記為函數(shù)的導(dǎo)函數(shù).若,試問:在區(qū)間上是否存在()個(gè)正數(shù)…,使得成立?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)
(1)判斷的單調(diào)性并證明;
(2)若滿足,試確定的取值范圍。
(3)若函數(shù)對(duì)任意時(shí),恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)函數(shù)
⑴當(dāng)且函數(shù)在其定義域上為增函數(shù)時(shí),求的取值范圍;
⑵若函數(shù)在處取得極值,試用表示;
⑶在⑵的條件下,討論函數(shù)的單調(diào)性。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)的單調(diào)遞增區(qū)間為,
(Ⅰ)求證:;
(Ⅱ)當(dāng)取最小值時(shí),點(diǎn)是函數(shù)圖象上的兩點(diǎn),若存在使得,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題分12分)
定義.
(Ⅰ)求曲線與直線垂直的切線方程;
(Ⅱ)若存在實(shí)數(shù)使曲線在點(diǎn)處的切線斜率為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com