已知條件p:函數(shù)f(x)=log3x-3,(1≤x≤9),設(shè)F(x)=f2(x)+f(x2).
(1)求F(x)的最大值及最小值;
(2)若條件q:“|F(x)-m|<2”,且p是q的充分條件,求實(shí)數(shù)m的取值范圍.
【答案】分析:(1)把函數(shù)f(x)代入F(x),利用換元法轉(zhuǎn)化為二次函數(shù)然后求出函數(shù)的最大值及最小值;
(2)通過|F(x)-m|<2,求出F(x)d的范圍,利用p是q的充分條件,得到不等式組,然后求實(shí)數(shù)m的取值范圍.
解答:解:(1)∵函數(shù)f(x)=log3x-3,(1≤x≤9),
∴F(x)=f2(x)+f(x2
=(log3x-3)2+log3x2-3
=log32x-4log3x+6   (1≤x≤3)(3分)
令t=log3x,則t∈[0,1],F(xiàn)(x)=t2-4t+6=(t-2)2+2
∴F(x)max=6,F(xiàn)(x)min=3.(6分)
(2)|F(x)-m|<2?m-2<F(x)<m+2,
因?yàn)閜是q的充分條件,∴即4<m<5.
∴m的取值范圍是4<m<5(12分)
點(diǎn)評:本題是中檔題,考查對數(shù)函數(shù)與二次函數(shù)的轉(zhuǎn)化,二次函數(shù)閉區(qū)間上的最值的求法,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:函數(shù)f(x)=log(10-a2)x在(0,+∞)上單調(diào)遞增;條件q:存在m∈[-1,2]使得不等式a2-2a-5≤
m2+5
成立.如果“p且q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)f(x)=x2-2x+
12
a
的圖象與x軸有交點(diǎn),命題q:f(x)=(2a-1)x為R上的減函數(shù),則p是q的( 。l件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:函數(shù)f(x)=log3x-3,(1≤x≤9),設(shè)F(x)=f2(x)+f(x2).
(1)求F(x)的最大值及最小值;
(2)若條件q:“|F(x)-m|<2”,且p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知條件p:函數(shù)f(x)=log3x-3,(1≤x≤9),設(shè)F(x)=f2(x)+f(x2).
(1)求F(x)的最大值及最小值;
(2)若條件q:“|F(x)-m|<2”,且p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案