設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域為R的奇函數(shù).
(1)求k的值;
(2)(理)若數(shù)學(xué)公式,且g(x)=a2x+a-2x-2m•f(x)在[1,+∞)上的最小值為-2,求m的值.
(文)若f(1)<0,試說明函數(shù)f(x)的單調(diào)性,并求使不等式f(x2+tx)+f(4-x)<0恒成立的取值范圍.

解:(1)由題意,對任意x∈R,f(-x)=-f(x),
即a-x-(k-1)ax=-ax+(k-1)a-x,
即(k-1)(ax+a-x)-(ax+a-x)=0,(k-2)(ax+a-x)=0,
因為x為任意實數(shù),所以k=2.
解法二:因為f(x)是定義域為R的奇函數(shù),所以f(0)=0,即1-(k-1)=0,k=2.
當k=2時,f(x)=ax-a-x,f(-x)=a-x-ax=-f(x),f(x)是奇函數(shù).
所以k的值為2.
(2)(理)由(1)f(x)=ax-a-x,因為,所以
解得a=2.
故f(x)=2x-2-x,g(x)=22x+2-2x-2m(2x-2-x),
令t=2x-2-x,則22x+2-2x=t2+2,由x∈[1,+∞),得
所以g(x)=h(t)=t2-2mt+2=(t-m)2+2-m2
時,h(t)在上是增函數(shù),則,,
解得(舍去).
時,則f(m)=-2,2-m2=-2,解得m=2,或m=-2(舍去).
綜上,m的值是2.
(2)(文)由(1)知f(x)=ax-a-x,由f(1)<0,得,解得0<a<1.
當0<a<1時,y=ax是減函數(shù),y=-a-x也是減函數(shù),所以f(x)=ax-a-x是減函數(shù).
由f(x2+tx)+f(4-x)<0,所以f(x2+tx)<-f(4-x),
因為f(x)是奇函數(shù),所以f(x2+tx)<f(x-4).
因為f(x)是R上的減函數(shù),所以x2+tx>x-4即x2+(t-1)x+4>0對任意x∈R成立,
所以△=(t-1)2-16<0,
解得-3<t<5.
所以,t的取值范圍是(-3,5).
分析:(1)根據(jù)奇函數(shù)的定義:對任意x∈R,f(-x)=-f(x),或性質(zhì)可得f(0)=0,由此求得k值.
(2)(理)利用換元法,將函數(shù)轉(zhuǎn)化為二次函數(shù),研究函數(shù)的單調(diào)性,得到函數(shù)g(x)取得最小值.利用條件,就可以求m的值.
(文)由f(x)=ax-a-x(a>0且a≠1),f(1)<0,求得0<a<1,f(x)在R上單調(diào)遞減,不等式化為f(x2+tx)<f(x-4),即x2+(t-1)x+4>0 恒成立,由△<0求得t的取值范圍.
點評:本題考查指數(shù)型復(fù)合函數(shù)的性質(zhì)以及應(yīng)用,考查函數(shù)的奇偶性的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過點(1,7),又其反函數(shù)的圖象經(jīng)過點(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習(xí)冊答案