已知O為坐標(biāo)原點(diǎn),△AOB中,邊OA所在的直線方程是,邊AB所在的直

線方程是,且頂點(diǎn)B的橫坐標(biāo)為6。

    (1)求△AOB中,與邊AB平行的中位線所在直線的方程;

    (2)求△AOB的面積;

    (3)已知OB上有點(diǎn)D,滿足△AOD與△ABD的面積比為2,求AD所在的直線方程。

 

【答案】

 

(1)設(shè)OB的中點(diǎn)為E,則E(3,2),根據(jù)直線方程的點(diǎn)斜式:

    OB邊上的中位線所在的方程為;

    (2)依題意,△AOB中,點(diǎn)A的坐標(biāo)為(2,6),則B到OA的距離為,而,

所以;

    (3)根據(jù)題意,

   

    所以點(diǎn)D的坐標(biāo)為。

    則AD所在的直線方程為

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),點(diǎn)A(2,1),點(diǎn)P在區(qū)域
y≤x
x+y≥2
y>3x-6
內(nèi)運(yùn)動,則
OA
OP
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a為常數(shù),
設(shè)函數(shù)f(x)=
OM
ON

(Ⅰ)求函數(shù)y=f(x)的表達(dá)式和對稱軸方程;
(Ⅱ)若角C為△ABC的三個內(nèi)角中的最大角,且y=f(C)的最小值為0,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),點(diǎn)M(3,2),若N(x,y)滿足不等式組
x≥1
y≥0
x+y≤4
,則
OM
ON
 的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),A,B兩點(diǎn)的坐標(biāo)均滿足不等式組
x-3y+1≤0
x+y-3≤0
x-1≥0
,則tan∠AOB的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),M(cosx,2
3
),N(2cosx,sinxcosx+
3
6
a)
其中x∈R,a為常數(shù),設(shè)函數(shù)f(x)=
OM
ON

(1)求函數(shù)y=f(x)的表達(dá)式;
(2)若角C∈[
π
3
,π)
且y=f(C)的最小值為0,求a的值;
(3)在(2)的條件下,試畫出y=f(x)(x∈[0,π])的簡圖.

查看答案和解析>>

同步練習(xí)冊答案