某種家用電器每臺(tái)的銷(xiāo)售利潤(rùn)與該電器的無(wú)故障使用時(shí)間T(單位:年)有關(guān).若T≤1,則銷(xiāo)售利潤(rùn)為0元;若1<T≤3,則銷(xiāo)售利潤(rùn)為100元;若T>3,則銷(xiāo)售利潤(rùn)為200元.設(shè)每臺(tái)該種電器的無(wú)故障使用時(shí)間T≤1,1<T≤3及T>3這三種情況發(fā)生的概率分別為P1,P2,P3,又知P1,P2是方程25x2-15x+a=0的兩個(gè)根,且P2=P3
(1)求P1,P2,P3的值;
(2)記ξ表示銷(xiāo)售兩臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和,求ξ的分布列;
(3)求銷(xiāo)售兩臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和的平均值.
【答案】分析:(1)由已知得p1+p2+p3=1,p2=p3,p1+2p2=1,再由p1,p2是方程25x2-15x+a=0的兩個(gè)根,能求出
(2)ξ的可能值是0,100,200,300,400,p(ξ=0)=,p(ξ=100)=,p(ξ=200)=,p(ξ=300)=,p(ξ=400)=.由此能求出隨機(jī)變量ξ的分布列.
(3)由ξ的分布列能求出銷(xiāo)售利潤(rùn)總和的平均值Eξ.
解答:解:(1)由已知得p1+p2+p3=1,
∵p2=p3,∴p1+2p2=1,
∵p1,p2是方程25x2-15x+a=0的兩個(gè)根,
,

(2)ξ的可能值是0,100,200,300,400,
p(ξ=0)=,
p(ξ=100)=,
p(ξ=200)=
p(ξ=300)=,
p(ξ=400)=
∴隨機(jī)變量ξ的分布列為
ξ100200300400
P
(3)銷(xiāo)售利潤(rùn)總和的平均值為
∴銷(xiāo)售兩臺(tái)這種家用電器的利潤(rùn)總和的平均值為240元.
點(diǎn)評(píng):本題考查概率的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地利用離散型隨機(jī)變量的分布列和期望進(jìn)行解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種家用電器每臺(tái)的銷(xiāo)售利潤(rùn)與該電器的無(wú)故障使用時(shí)間T(單位:年)有關(guān).若T≤1,則銷(xiāo)售利潤(rùn)為0元;若1<T≤3,則銷(xiāo)售利潤(rùn)為100元;若T>3,則銷(xiāo)售利潤(rùn)為200元.設(shè)每臺(tái)該種電器的無(wú)故障使用時(shí)間T≤1,1<T≤3及T>3這三種情況發(fā)生的概率分別為P1,P2,P3,又知P1,P2是方程25x2-15x+a=0的兩個(gè)根,且P2=P3
(1)求P1,P2,P3的值;
(2)記ξ表示銷(xiāo)售兩臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和,求ξ的分布列;
(3)求銷(xiāo)售兩臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種家用電器每臺(tái)的銷(xiāo)售利潤(rùn)與該電器的無(wú)故障使用時(shí)間有關(guān),每臺(tái)這種家用電器若無(wú)故障使用時(shí)間不超過(guò)一年,則銷(xiāo)售利潤(rùn)為0元,若無(wú)故障使用時(shí)間超過(guò)一年不超過(guò)三年,則銷(xiāo)售利潤(rùn)為100元;若無(wú)故障使用時(shí)間超過(guò)三年,則銷(xiāo)售利潤(rùn)為200元.
已知每臺(tái)該種電器的無(wú)故障使用時(shí)間不超過(guò)一年的概率為
1
5
,無(wú)故障使用時(shí)間超過(guò)一年不超過(guò)三年的概率為
2
5

(I)求銷(xiāo)售兩臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和為400元的概率;
(II)求銷(xiāo)售三臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和為300元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種家用電器每臺(tái)的銷(xiāo)售利潤(rùn)與該電器的無(wú)故障使用時(shí)間T(單位:年)有關(guān).若T≤1,則銷(xiāo)售利潤(rùn)為0元;若1<T≤3,則銷(xiāo)售利潤(rùn)為100元;若T>3,則銷(xiāo)售利潤(rùn)為200元.設(shè)每臺(tái)該種電器的無(wú)故障使用時(shí)間T≤1,1<T≤3,T>3這三種情況發(fā)生的概率分別為p1,p2,p3,又知p1,p2是方程25x2-15x+a=0的兩個(gè)根,且p2=p3
(Ⅰ)求p1,p2,p3的值;
(Ⅱ)記λ表示銷(xiāo)售兩臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和,求λ的分布列;
(Ⅲ)求銷(xiāo)售兩臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)

某種家用電器每臺(tái)的銷(xiāo)售利潤(rùn)與該電器的無(wú)故障使用時(shí)間T (單位:年)有關(guān).若T≤1,則銷(xiāo)售利潤(rùn)為0元;若1<T≤3,則銷(xiāo)售利潤(rùn)為100元;若T>3,則銷(xiāo)售利潤(rùn)為200元.設(shè)每臺(tái)該種電器的無(wú)故障使用時(shí)間T≤1,1<T≤3及T>3這三種情況發(fā)生的概率分別為p1,p2,p3,又知p1,p2是方程的兩個(gè)根,且p2=p3

(1)求p1,p2,p3的值;

  (2)記表示銷(xiāo)售兩臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)

   某種家用電器每臺(tái)的銷(xiāo)售利潤(rùn)與該電器的無(wú)故障使用時(shí)間 (單位:年)有關(guān). 若,則銷(xiāo)售利潤(rùn)為元;若,則銷(xiāo)售利潤(rùn)為元;若,則銷(xiāo)售利潤(rùn)為元.設(shè)每臺(tái)該種電器的無(wú)故障使用時(shí)間,這三種情況發(fā)生的概率分別為,,叉知,是方程的兩個(gè)根,且   (1)求,的值;  (2)記表示銷(xiāo)售兩臺(tái)這種家用電器的銷(xiāo)售利潤(rùn)總和,求的期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案