已知m、n為兩條不同的直線,α、β為兩個不同的平面,則下列命題中正確的是( )
A.m?α,n?α,m∥β,n∥β⇒α∥β
B.α∥β,m?α,n?α,⇒m∥n
C.m⊥α,m⊥n⇒n∥α
D.n∥m,n⊥α⇒m⊥α
【答案】分析:結(jié)合題意,由面面平行的判定定理判斷A,面面平行的定義判斷B,線面垂直的定義判斷C,利用平行和垂直的結(jié)論判斷.
解答:解:A不正確,m、n少相交條件;
B不正確,分別在兩個平行平面的兩條直線不一定平行;
C不正確,n可以在α內(nèi);
故選D
點評:本題主要考查了面面平行的判定定理及定義,線面垂直的定義及一些結(jié)論來判斷空間線面的
位置關系,培養(yǎng)邏輯思維能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、已知m、n為兩條不同的直線,α、β為兩個不同的平面,則下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

5、已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•濰坊二模)已知m,n為兩條不同的直線,α,β為兩個不同的平面,下列四個命題中,錯誤命題的個數(shù)是(  )
①α∥β,m?α,n?β,則m∥n;
②若m?α,n?α,且m∥β,n∥β,則α∥β;
③若α⊥β,m?α,則m⊥β; 
④若α⊥β,m⊥β,m?α,則m∥α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m、n為兩條不同直線,α、β為兩個不重合的平面,給出下列命題中正確的有( 。
m⊥α
m⊥n
⇒n∥α
;
m⊥β
n⊥β
⇒m∥n
;
m⊥α
m⊥β
⇒α∥β

m?α
n?α
α∥β
⇒m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•青島一模)已知m、n為兩條不同的直線,α、β為兩個不同的平面,則下列命題中正確的是(  )

查看答案和解析>>

同步練習冊答案