已知橢圓數(shù)學(xué)公式(a>b>0)經(jīng)過(guò)點(diǎn)數(shù)學(xué)公式,其離心率為數(shù)學(xué)公式,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ) 設(shè)直線l的斜率為k,且經(jīng)過(guò)橢圓C的右焦點(diǎn)F,與C交于A,B兩點(diǎn),點(diǎn)P滿(mǎn)足數(shù)學(xué)公式,試判斷是否存在這樣的實(shí)數(shù)k,使點(diǎn)P在橢圓C上,若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.

解:(Ⅰ)由已知可得,所以3a2=4b2
又點(diǎn)在橢圓C上,所以
由①②解之,得a2=4,b2=3.
故橢圓C的方程為.…(5分)
(Ⅱ) 橢圓C的右焦點(diǎn)F(1,0),設(shè)直線l的方程為y=k(x-1)
則由消y化簡(jiǎn)整理得:(3+4k2)x2-8k2x+4k2-12=0------(7分)
設(shè)A,B,P點(diǎn)的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x0,y0),則

.-------------(9分)
設(shè)P在橢圓C上,所以
從而,化簡(jiǎn)得4k2=3+4k2,無(wú)解
所以不存在這樣的實(shí)數(shù)k,使點(diǎn)P在橢圓C上------------------------------------------------(12分)
分析:(Ⅰ)根據(jù)橢圓離心率為,可得3a2=4b2,利用點(diǎn)在橢圓C上,可得,由此可求橢圓C的方程;
(Ⅱ)設(shè)直線l的方程為y=k(x-1)與橢圓方程聯(lián)立,消元,利用,確定坐標(biāo)之間的關(guān)系,利用韋達(dá)定理,可得P的坐標(biāo),設(shè)P在橢圓C上,利用橢圓方程,即可得到結(jié)論.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,確定P的坐標(biāo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a、m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省、陽(yáng)東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)

如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上的頂點(diǎn),直線AF2交橢圓于另 一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題

已知橢圓(a>b>0),點(diǎn)在橢圓上。

(I)求橢圓的離心率。

(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿(mǎn)足|AQ|=|AO|,求直線OQ的斜率的值。

【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識(shí). 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門(mén)市高三天5月模擬文科數(shù)學(xué)試題 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.

   (1)求橢圓C的標(biāo)準(zhǔn)方程;

   (2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省邯鄲市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿(mǎn)分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點(diǎn),,求k的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案