設(shè)△AnBnCn的三邊長分別為an,bn,cn,△AnBnCn的面積為Sn,n=1,2,3,…
若b1>c1,b1+c1=2a1,an+1=an,bn+1=,cn+1=,則( )
A、{Sn}為遞減數(shù)列
B、{Sn}為遞增數(shù)列
C、{S2n-1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D、{S2n-1}為遞減數(shù)列,{S2n}為遞增數(shù)列
B;
【解析】因?yàn)?img src="http://thumb2018.1010pic.com//pic6/res/gzsx/web/STSource/2013121123414658274880/SYS201312112342159959670297_DA.files/image001.png">,不妨設(shè),;
故;
,,, ;
顯然;
同理,,,,,顯然.
【考點(diǎn)定位】本題考查創(chuàng)新型數(shù)列,在解題的過程中構(gòu)使用海倫秦九韶公式進(jìn)行計(jì)算,考查學(xué)生特殊到一般的數(shù)學(xué)思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
an+cn |
2 |
an+bn |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
cn+an |
2 |
bn+an |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)△AnBnCn的三邊長分別為an,bn,cn,△AnBnCn的面積為Sn,n=1,2,3,…
若b1>c1,b1+c1=2a1,an+1=an,bn+1=,cn+1=,則( )
A、{Sn}為遞減數(shù)列 B、{Sn}為遞增數(shù)列
C、{S2n-1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D、{S2n-1}為遞減數(shù)列,{S2n}為遞增數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:單選題
cn+an |
2 |
bn+an |
2 |
A.{Sn}為遞減數(shù)列 |
B.{Sn}為遞增數(shù)列 |
C.{S2n-1}為遞增數(shù)列,{S2n}為遞減數(shù)列 |
D.{S2n-1}為遞減數(shù)列,{S2n}為遞增數(shù)列 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com