[2012·安徽高考]設(shè)平面α與平面β相交于直線m,直線a在平面α內(nèi),直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:9-3變量間的相關(guān)關(guān)系與統(tǒng)計(jì)案例(解析版) 題型:選擇題
[2014·溫州檢測]下列兩個(gè)變量中具有相關(guān)關(guān)系的是( )
A.正方形的面積與邊長
B.勻速行駛的車輛的行駛距離與時(shí)間
C.人的身高與體重
D.人的身高與視力
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-3圓的方程(解析版) 題型:填空題
[2014·河北唐山]若直線y=kx+2k與圓x2+y2+mx+4=0至少有一個(gè)交點(diǎn),則m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-7立體幾何中的向量方法(解析版) 題型:選擇題
[2013·銀川調(diào)研]已知正三棱柱ABC-A1B1C1的側(cè)棱長與底面邊長相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-6空間向量及運(yùn)算(解析版) 題型:選擇題
[2014·寧化模擬]若向量a=(2x,1,3),b=(1,-2y,9),且a∥b,則( )
A.x=1,y=1 B.x=,y=-
C.x=,y=- D.x=-,y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:選擇題
[2014·福州質(zhì)檢]對于平面α和共面的直線m,n,下列命題是真命題的是( )
A.若m,n與α所成的角相等,則m∥n
B.若m∥α,n∥α,則m∥n
C.若m⊥α,m⊥n,則n∥α
D.若m?α,n∥α,則m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-2空間幾何體的表面積和體積(解析版) 題型:選擇題
[2013·江西高考]一幾何體的三視圖如圖所示,則該幾何體的體積為( )
A.200+9π B.200+18π C.140+9π D.140+18π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:6-5合情推理與演繹推理(解析版) 題型:選擇題
[2014·衡陽月考]“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以函數(shù)y=()x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤在于( )
A.大前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)
B.小前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)
C.推理形式錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)
D.大前提和小前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:5-1數(shù)列的概念與簡單表示法(解析版) 題型:填空題
[2014·浙江調(diào)研]設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知a1=1,an=-Sn·Sn-1(n≥2),則Sn=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com