已知各項(xiàng)都是正數(shù)的等比數(shù)列滿足:,

若存在兩項(xiàng)使得,則的最小值為          . 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶一模)設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2
Sn
是an+2 和an的等比中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>
an2
2
恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建省三明一中2012屆高三11月學(xué)段考試數(shù)學(xué)理科試題 題型:044

已知等比數(shù)列{an}的各項(xiàng)都是正數(shù),且2a1+3a2=1,a3是9a2與a6的等比中項(xiàng),

(Ⅰ)求{an}的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列{bn}滿足bn,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)
設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意的等比中項(xiàng).
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)證明;
(Ⅲ)設(shè)集合,且,若存在,使對(duì)滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意,的等比中項(xiàng).

(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)證明;

(Ⅲ)設(shè)集合,且,若存在,使對(duì)滿足 的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年重慶市七區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2是an+2 和an的等比中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明++…+<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案