某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元.為了增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出x(x∈N*)名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤(rùn)為10(a-
3x500
)
萬(wàn)元(a>0),剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高0.2x%.
(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則a的取值范圍是多少?
分析:(1)根據(jù)題意可列出10(1000-x)(1+0.2x%)≥10×1000,進(jìn)而解不等式求得x的范圍,確定問(wèn)題的答案.
(2)根據(jù)題意分別表示出從事第三產(chǎn)業(yè)的員工創(chuàng)造的年總利潤(rùn)和從事原來(lái)產(chǎn)業(yè)的員工的年總利潤(rùn),進(jìn)而根據(jù)題意建立不等式,根據(jù)均值不等式求得求a的范圍.
解答:解:(1)由題意得:10(1000-x)(1+0.2x%)≥10×1000,
即x2-500x≤0,又x>0,所以0<x≤500.
即最多調(diào)整500名員工從事第三產(chǎn)業(yè).
(2)從事第三產(chǎn)業(yè)的員工創(chuàng)造的年總利潤(rùn)為10(a-
3x
500
)x
萬(wàn)元,
從事原來(lái)產(chǎn)業(yè)的員工的年總利潤(rùn)為10(1000-x)(1+
1
500
x)
萬(wàn)元,
10(a-
3x
500
)x≤10(1000-x)
(1+0.2x%)
所以ax-
3x2
500
≤1000
+2x-x-
1
500
x2

所以ax≤
2x2
500
+1000+x
,
即a≤
2x
500
+
1000
x
+1
恒成立,
因?yàn)?span id="uykfmfd" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
2
500
x+
1000
x
≥2
2x
500
1000
x
=4
,
當(dāng)且僅當(dāng)
2x
500
=
1000
x
,即x=500時(shí)等號(hào)成立.
所以a≤5,又a>0,所以0<a≤5,
即a的取值范圍為(0,5].
點(diǎn)評(píng):本題主要考查了基本不等式在求最值問(wèn)題中的應(yīng)用.考查了學(xué)生綜合運(yùn)用所學(xué)知識(shí),解決實(shí)際問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元。為了增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤(rùn)為萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高.

(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則的取值范圍是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元。為了增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤(rùn)為萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高.

(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省長(zhǎng)沙市田家炳實(shí)驗(yàn)中學(xué)高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元.為了增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出x(x∈N*)名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤(rùn)為萬(wàn)元(a>0),剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高0.2x%.
(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則a的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省南通市六縣一市高三(上)期末沖刺數(shù)學(xué)試卷(解析版) 題型:解答題

某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元.為了增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出x(x∈N*)名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤(rùn)為萬(wàn)元(a>0),剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高0.2x%.
(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則a的取值范圍是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案